LePartisan.info À propos Podcasts Fil web Écologie BLOGS Revues Médias
KHRYS

Revue hebdomadaire du web


▸ les 20 dernières parutions

27.05.2025 à 11:27

Amenons PeerTube dans nos poches !

Framasoft

Grâce à votre soutien, nous (Framasoft, une petite association à but non-lucratif) développons PeerTube depuis sept ans ! D’un projet étudiant à un logiciel d’envergure internationale, notre solution de plateforme vidéo est désormais utilisée et reconnue par de nombreuses institutions ! Bien … Lire la suite­­
Texte intégral (3712 mots)

Grâce à votre soutien, nous (Framasoft, une petite association à but non-lucratif) développons PeerTube depuis sept ans ! D’un projet étudiant à un logiciel d’envergure internationale, notre solution de plateforme vidéo est désormais utilisée et reconnue par de nombreuses institutions !

Bien sûr, nous avons encore beaucoup de chemin à faire, et si la communauté de PeerTube grandit de jour en jour, nous percevons déjà quelques étapes cruciales qui permettraient à PeerTube d’être adopté par un plus grand public !

Avec votre aide, amenons PeerTube dans la poche de toutes et tous  !

 

Soutenir PeerTube

 

Une application pour toutes et tous !

L’année dernière a marqué un tournant important pour PeerTube. En effet, nous avons engagé Wicklow pour travailler sur l’application mobile PeerTube, doublant ainsi notre effectif dédié au développement de PeerTube.

Oui, ça peut sembler un peu dingue, et pourtant, PeerTube n’a été développé jusqu’à présent que par un seul développeur salarié et une poignée de contributeur·ices bénévoles ! (Merci mille fois à vous ! 💖)

Nous réfléchissions depuis longtemps à construire notre propre application mobile, constatant l’utilisation massive des smartphones pour profiter de contenus vidéos. Grâce à vos votes sur notre plateforme dédiée au partage d’idées concernant PeerTube, nous avons été convaincu·es d’entamer ce chantier et souhaitons aujourd’hui mettre des ressources dedans !

Depuis sa sortie en fin d’année dernière en version préliminaire, l’application a beaucoup évolué et vous pouviez il y a quelques semaines découvrir la première version majeure ! Le détail des améliorations apportées par cette version sont consultables dans l’article de blog dédié.

 

 

Une bulle d’autonomie hors du système YouTube-Twitch-Vimeo

Plus qu’une application mobile, PeerTube est un écosystème vibrant : 1300 plateformes recensées, totalisant 300 000 comptes utilisateurices et 756 000 vidéos. 

Outre les nombreuses autres améliorations, la version 7 a apporté un nouveau design, pensé pour être plus moderne, accessible et mieux adapté pour les institutions.

Parmi ces institutions, nous retrouvons notamment le Ministère de l’Éducation Nationale français ou le GARR (réseau informatique des universités italiennes).

Pour toutes ces raisons, nous considérons que PeerTube est désormais un logiciel mature

(même si, oui, il y a toujours moyen de l’améliorer et nous allons œuvrer dans ce sens ! 😛)

 

Nous voyons en PeerTube un logiciel émancipateur, permettant un partage non-marchand des vidéos.

Que vous souhaitiez partager vos vidéos avec vos élèves, publier vos tutoriels de jardinage facile, ou avoir une plateforme vidéo autonome pour votre structure, tout est possible avec PeerTube !

 

Popularisons les vidéos et lives partagées par des humain·es, pour des humain·es !

Pour permettre à encore plus de personnes d’accéder à PeerTube, nous sommes ravi·es d’annoncer le lancement d’une campagne de financement participatif ! 🎉

Notre feuille de route pour la partie Web de PeerTube étant déjà financée, nous voulons concentrer sur l’amélioration de l’application mobile. Nous aimerions y apporter des fonctionnalités clés pour qu’elle facilite l’apport de contenus.

Ensemble, allons plus loin en amenant PeerTube dans les poches de tout le monde !

 

Quatre objectifs collectifs

PeerTube est pensé comme un commun, un outil appropriable par toutes et tous. Nous souhaitons développer l’application dans ce sens et avons donc pensé à quatre objectifs-clés nous permettant de nous en rapprocher.

Contrairement à la plupart des financements participatifs, nous ne proposons pas de « contrepartie » pour votre don. En soutenant PeerTube, votre récompense, c’est d’avoir contribué à un Commun, qui sert à toutes et appartient à tous.

Cependant, nous avons joué avec le concept, et vous proposons différentes « contributions » possibles, pour vous montrer le travail que votre soutien nous permet de réaliser.

 

15 000€ – Un PeerTube « Premium » gratuit pour toustes

Cet objectif permet de débloquer un « PeerTube Premium »… mais gratuit et pour tout le monde !
Sepia, la mascotte de PeerTube, qui porte un plateau sur lequel il y a du popcorn. Il y a une serviette blanche sur le tentacule qui porte le plateau. Ses yeux sont fermés et sa tête orientée vers le bas.

Sepia apporte le popcorn. CC-BY-SA David Revoy

  • Lisez la vidéo en fond pour pouvoir continuer d’écouter une conférence ou un cours sans interruption, même si vous avez besoin d’aller jeter un coup d’œil rapide à un document
  • Diffusez les vidéos sur votre télévision et montrez à vos ami·es le tutoriel vidéo super utile pour votre association
  • Recevez des notifications sur les nouveaux contenus publiés afin de ne plus manquer les sorties de votre vidéaste préféré·e
  • Changez la définition de la vidéo et économisez ainsi votre forfait data
Tout ça, sans publicité ! La magie d’une application pensée pour vous servir, pas pour vous pister ! 🪄

 

35 000€ – Partager des vidéos depuis votre poche

Parfois, vous n’avez pas de grosse édition à faire sur vos vidéos et souhaitez juste les téléverser rapidement sans passer par votre ordinateur.

C’est ce que vous permettra cet objectif !
Sepia, la mascotte de PeerTube, qui édite une pellicule de film à coups de ciseaux.

Sepia fait de l’édition. CC-BY-SA David Revoy

  • Gérez toutes les chaînes de votre compte, directement dans l’application
  • Modifiez les chapitres, sous-titres et autres informations de vos vidéos
  • Consultez les statistiques détaillées de votre contenu : combien de personnes regardent vos vidéos, pendant combien de temps, à partir d’où, etc.
  • Téléversez de nouvelles vidéos avec votre téléphone
Est-ce qu’il faut que l’application réponde aux besoins des vidéastes… ? À vous de nous le dire, car nous avons bien envie de développer ces fonctionnalités d’ici à la fin de l’année.

 

55 000€ – Diffuser en live depuis votre téléphone

Pour que vous puissiez aussi bien partager en direct un mouvement social ou votre découverte de Séoul !
Sepia, la mascotte de PeerTube, fait un live via son smartphone. Elle fait le cul de poule avec sa bouche.

Sepia tourne un vlog. CC-BY-SA David Revoy

  • Configurez et gérez vos diffusions en direct sur votre téléphone, sans passer par OBS ! 😎
  • Utilisez votre périphérique et sa connexion, pas de matériel supplémentaire requis
  • Diffusez en live du bout des doigts, sans avoir besoin d’ordinateur
  • Plus besoin d’application secondaire dédiée aux lives, retrouvez tous vos besoins au même endroit !
Nous imaginons déjà les directs partagés depuis une manifestation, une conférence, un débat associatif. Néanmoins, si cet objectif est financé, nous n’envisageons pas le finir avant fin de l’année, et tablons sur une publication en 2026.

 

75 000€ – Soutenir Framasoft & PeerTube

PeerTube est un projet majeur dans l’histoire de Framasoft, mais il n’est pas le seul. Si Framasoft a pu développer PeerTube, c’est parce que notre association a été soutenue pour ses autres actions, par des dons.

Soutenir Framasoft, c’est ainsi contribuer à la construction d’un numérique solidaire, émancipateur et non-marchand.

 

Sepia, la mascotte de PeerTube, sur les épaules de Pinchot, la mascotte de Framasoft. Pinchot court. Les deux ont une expression joyeuse.

Sepia et Pinchot. CC-BY-SA David Revoy.

  • Nous ne faisons pas de profit  : nous fournissons des Communs
  • Tous les dons financent tous nos projets, à la fois PeerTube mais aussi des dizaines d’autres
  • Nous maintenons PeerTube, avec un support gratuit et de qualité — ce travail de l’ombre, quotidien, se fait en plus des nouveaux développements
  • Nous dégooglisons plus de 2M de personnes par mois, en leur fournissant des services web qui permettent de s’émanciper des géants du numérique


Nous détaillerons chacun de ces objectifs dans des articles de blog dédiés, très prochainement ! Comme on dit dans le Bouchonnois  : Stay Tuned !

Contribuer aux communs : un cercle vertueux !

En contribuant, vous ne donnez pas seulement pour l’application mobile PeerTube, mais pour l’ensemble des projets de Framasoft !


Voici un graphique montrant, dans le détail, la manière dont nous utilisons cet argent. Si vous souhaitez plus de détails, vous pouvez aussi consulter notre rapport financier.

Graphique sur la répartition de l'argent de Framasoft.

Ressources humaines : 73 %
Serveurs et domaines : 7 %
Frais de fonctionnement : 5 %
Interventions et projets ext. : 4 %
Communication : 1,5 %
Prestations projets : 6 %
Frais bancaires et impôts : 3,5 %

Graphique sur la répartition de l’argent de Framasoft.



Ce financement participatif est vraiment important pour nous car non seulement il nous permet de sécuriser l’argent nécessaire au développement du projet, mais aussi d’estimer l’enthousiasme du public pour l’application mobile et le projet PeerTube en général !

Cependant, soyons clair·es ! Nous chercherons à réaliser les améliorations proposées dans cette collecte que nous parvenions à nos objectifs ou non !
Si les objectifs de collecte ne sont pas remplis, nous devrons piocher dans les dons faits par la communauté francophone en fin d’année dernière pour l’ensemble des projets de Framasoft. Cela nous signifiera que notre enthousiasme pour PeerTube et son application n’est pas partagé. (Ça arrive, parfois ! 🤷‍♀️)
Nous nous demanderons alors s’il faut vraiment ajouter l’envoi de vidéos (ou les live) dans l’application, mais surtout s’il faut lever le pied dans notre stratégie de populariser l’écosystème PeerTube.

Votre soutien est notre boussole : à vous ne nous dire si vous partagez notre enthousiasme !

 

Soutenir PeerTube

 

Soutenez l’écosystème PeerTube en partageant votre attention…

L’écosystème de PeerTube dépasse le seul giron de Framasoft. Mois après mois, de plus en plus de personnes ou structures s’approprient le projet et le font vivre !

Grâce à un système d’extensions puissant, des développeurs et développeuses volontaires ne cessent d’étendre les fonctionnalités du logiciel. Le catalogue d’extensions de PeerTube comporte plus de 200 extensions, chacune permettant d’ajouter des fonctionnalités de PeerTube ou de modifier son apparence !

Côté communauté, celle-ci s’enrichit de différentes initiatives inspirantes !

C’est le cas, par exemple, du compte Mastodon Fedi.Video qui, depuis des années, aide à visibiliser les vidéastes publiant sur PeerTube !

Capture d'écran d'un message de Fedi.Video.

Le pouet dit :
« The excellent artist and libre fan David Revoy has an official PeerTube account full of art, art tutorials, reviews of art-related hardware etc. You can follow at:

➡️ @shichimi 

There are already more than 80 videos uploaded. If these haven't federated to your server yet, you can browse them all at https://peertube.touhoppai.moe/a/shichimi/videos

You can also follow Revoy's general account at @davidrevoy »

Un des nombreux messages de promotion de Fedi.Video.

 

Aussi, des plateformes spécialisées se développent, à l’image de MakerTube, dédiée à celles et ceux « qui font ».

 

Nous ne pouvons évidemment lister dans cet article toutes les initiatives géniales que nous repérons, mais nous tenons à vous dire un immense bravo à toustes pour votre travail formidable. Merci d’enrichir PeerTube de vos couleurs ! 🫶

Si vous souhaitez en savoir d’avantage sur l’écosystème PeerTube, vous pouvez vous inscrire sur la newsletter PeerTube. Vous recevrez ainsi des informations concernant les avancées du projet mais aussi sur les initiatives de la communauté !

Vous pouvez aussi suivre le compte PeerTube (et Framasoft) sur les médias sociaux (Mastodon et BlueSky) :

En plus des informations ponctuelles, nous y publions chaque semaine des astuces pour utiliser PeerTube !

Message du compte Framasoft promouvant une astuce PeerTube :

« Dans #PeerTube, vous pouvez ajouter des sous-titres à vos vidéos, que ce soit manuellement ou en les générant automatiquement !

Mais saviez-vous que vous pouvez utiliser le widget de transcription pour chercher dans ces sous-titres ?

👉 https://docs.joinpeertube.org/use/watch-video#transcription-widget
»

Exemple d’astuce PeerTube partagée sur Mastodon chaque semaine.

 

 

…et en nous aidant à récolter les fonds !

Nous nous donnons 3 semaines pour, collectivement, financer nos actions pour populariser PeerTube.

Nous croyons sincèrement que nous pouvons y parvenir car nous sommes convaincu·es que PeerTube est un Commun qui vous importe autant qu’à nous !

Alors si vous aussi souhaitez voir advenir un monde où PeerTube est utilisé par toutes et tous, soutenez-nous en faisant un don (si vous le pouvez) et en diffusant le site de la campagne autour de vous !

 

Ensemble, ré-approprions nous les plateformes vidéos !

Soutenir PeerTube


26.05.2025 à 07:42

Khrys’presso du lundi 26 mai 2025

Khrys

Comme chaque lundi, un coup d’œil dans le rétroviseur pour découvrir les informations que vous avez peut-être ratées la semaine dernière. Tous les liens listés ci-dessous sont a priori accessibles librement. Si ce n’est pas le cas, pensez à activer … Lire la suite­­
Texte intégral (11359 mots)

Comme chaque lundi, un coup d’œil dans le rétroviseur pour découvrir les informations que vous avez peut-être ratées la semaine dernière.


Tous les liens listés ci-dessous sont a priori accessibles librement. Si ce n’est pas le cas, pensez à activer votre bloqueur de javascript favori ou à passer en “mode lecture” (Firefox) ;-)

Brave New World

Spécial IA

Spécial Palestine et Israël

Spécial femmes dans le monde

Spécial France

Spécial femmes en France

Spécial médias et pouvoir

Spécial emmerdeurs irresponsables gérant comme des pieds (et à la néolibérale)

Spécial recul des droits et libertés, violences policières, montée de l’extrême-droite…

Spécial résistances

Spécial outils de résistance

  • Que boycotter ? (bdsfrance.org)

    La campagne BDS est une campagne de citoyens, c’est à chacun de s’en emparer pour affirmer son pouvoir d’opposition à l’apartheid pratiqué par Israël. Par le boycott économique d’abord, le plus simple, à la portée de chacun quand il achète un produit ou utilise un service, mais aussi, en fonction de vos activités, le boycott culturel, universitaire, sportif…

  • Face à l’urgence à Gaza, votre courage politique est attendu (speakout.lemouvement.ong)

    Pour interpeller l’Élysée en quelques secondes :
    1/ cliquez sur le bouton envoyer
    2/ une fois le mail envoyé, cliquez sur c’est fait !

  • Soutenir la Palestine (soutenirpalestine.wordpress.com)

    Un site pour répertorier de manière simple et synthétique des moyens à ta portée pour soutenir la Palestine

  • Festivals, concerts, artistes : comment des milliardaires s’accaparent l’industrie musicale (streetpress.com)

    Après la presse et l’édition, une poignée de grandes fortunes mettent la main sur la musique et les festivals. Le syndicat des musiques actuelles (SMA) publie une cartographie pour alerter sur la concentration en cours en France.

Spécial GAFAM et cie

Les autres lectures de la semaine

Les BDs/graphiques/photos de la semaine

Les vidéos/podcasts de la semaine

Les trucs chouettes de la semaine

Retrouvez les revues de web précédentes dans la catégorie Libre Veille du Framablog.

Les articles, commentaires et autres images qui composent ces « Khrys’presso » n’engagent que moi (Khrys).


25.05.2025 à 09:00

La reconnaissance faciale : un projet politique

Framasoft

Dans son livre, « Your face belongs to us », Kashmir Hill nous permet de comprendre que la reconnaissance faciale n’est pas un projet technologique. Elle est un projet idéologique, soutenue et financée par des gens qui ont un projet politique radical pour la société. Elle est un outil qui vise à contourner le droit pour faire advenir une autre société.
Texte intégral (3160 mots)

Cet article est une republication, avec l’accord de l’auteur, Hubert Guillaud. Il a été publié en premier le 17 février 2025 sur le site Dans Les Algorithmes sous licence CC BY-NC-SA.


Dans son livre, « Your face belongs to us », Kashmir Hill nous permet de comprendre que la reconnaissance faciale n’est pas un projet technologique. Elle est un projet idéologique, soutenue et financée par des gens qui ont un projet politique radical pour la société. Elle est un outil qui vise à contourner le droit pour faire advenir une autre société.

 

 

 

 

 

 

Suite de notre plongée dans le livre de Kashmir Hill, « Your face belongs to us ». Après avoir observé l’histoire du développement de la reconnaissance faciale, retour sur l’enquête sur le développement de Clearview, la startup de la reconnaissance faciale. 2ᵉ partie.

Clearview, un outil d’investissement idéologique

Le cœur du livre de Kashmir Hill, Your face belongs to us, est consacré à l’histoire de l’entreprise Clearview. Hill rappelle que lorsqu’elle entend parler de cette entreprise jusqu’alors inconnue, face au silence qu’elle reçoit de ses fondateurs, elle contacte alors des policiers qui lui en font immédiatement les louanges : Clearview parvient à identifier n’importe qui, lui expliquent-ils ! Pourtant, quand ils entrent une photo de la journaliste dans le moteur, celui-ci ne fournit aucune réponse, alors que de nombreuses images d’elle sont disponibles en ligne, ce qui devrait permettre de la réidentifier facilement. En fait, ce n’est pas que la journaliste n’est pas dans la base, mais que toute recherche sur elle est protégée et déclenche même une alerte quand quelqu’un s’y essaye.

Cette anecdote permet de montrer, très concrètement, que ceux qui maintiennent la base disposent d’un pouvoir discrétionnaire immense, pouvant rendre des personnes totalement invisibles à la surveillance. Les constructeurs de Clearview peuvent voir qui est recherché par qui, mais également peuvent contrôler qui peut être retrouvé. Cet exemple est vertigineux et souligne que les clefs d’un tel programme et d’un tel fichier sont terribles. Que se passera-t-il quand le suspect sera le supérieur d’un agent ? Qui pour garantir l’incorruptibilité d’un tel système ? On comprend vite que dans une société démocratique, un tel outil ne peut pas être maintenu par une entreprise privée, hormis si elle est soumise à des contrôles et des obligations des plus rigoureux – et le même problème se pose si cet outil est maintenu par une entité publique. Ce qui n’est absolument pas le cas de Clearview.

Hill raconte longuement l’histoire de la rencontre des cofondateurs de Clearview. Elle souligne le fait que ceux-ci se rencontrent du fait de leurs opinions politiques, lors de réunions et de meetings en soutien à la candidature de Donald Trump à l’été 2016. Hoan Ton-That, le développeur et confondateur de Clearview, fasciné par le candidat républicain, prend alors des positions politiques racistes que ses amis ne lui connaissaient pas. C’est via les réseaux républicains qu’il rencontre des personnages encore plus radicaux que lui, comme Peter Thiel, le milliardaire libertarien qui sera le premier financeur du projet, ou encore Richard Schwartz, qui deviendra son associé. Si les deux cofondateurs de Clearview ne sont pas des idéologues, le produit qu’ils vont imaginer correspond néanmoins aux convictions politiques de l’extrême-droite américaine dont ils se revendiquent à cette époque. L’entreprise va d’ailleurs particulièrement attirer (et aller chercher) des investisseurs au discours politique problématique, comme Paul Nehlen, tenant du nationalisme blanc.

C’est en voyant fonctionner l’application russe de reconnaissance faciale FindFace, qui permet de retrouver les gens inscrits sur VKontakte, le réseau social russe, que Ton-That a l’idée d’un produit similaire. En novembre 2016, il enregistre le site web smartcherckr.com. Le projet se présente alors comme un système de réidentification depuis une adresse mail ou une image, permettant d’inférer les opinions politiques des gens… dans le but « d’éradiquer les gauchistes » !

Si depuis les discours des fondateurs se sont policés, nous avons là des gens très conservateurs, qui tiennent des propos d’extrême-droite et qui vont concevoir un outil porteur de ces mêmes valeurs. La reconnaissance faciale et ceux qui la portent sont bien les révélateurs d’une idéologie : ils relèvent tout à fait du technofascisme que dénonce le journaliste Thibault Prévost dans son livre, Les prophètes de l’IA. Et nul ne peut faire l’économie du caractère fasciste que porte la possibilité de réidentifier n’importe qui, n’importe quand pour n’importe quelle raison. C’est d’ailleurs là l’héritage de la reconnaissance faciale, inspirée des théories racistes de Francis Galton, qui va donner naissance à la police scientifique d’Alphonse Bertillon, comme à l’eugénisme et à la phrénologie d’un Cesare Lombroso. L’analyse des traits distinctifs des êtres humains est d’abord et reste le moyen de masquer le racisme sous le vernis d’une rigueur qui se veut scientifique. Hill suggère (sans jamais le dire) que Clearview est un projet politique.

Clearview, un outil de contournement du droit

Hill souligne un autre point important. Elle n’est pas tendre avec l’arrivisme du jeune informaticien australien Hoan Ton-That qui se fait un nom en créant des outils de phishing via des quizz pour Facebook et des jeux pour iPhone. Elle montre que celui-ci n’a pas beaucoup de conscience morale et que le vol des données, comme pour bien de porteurs de projets numériques, n’est qu’un moyen de parvenir à ses fins. Dès l’origine, Ton-That mobilise le scraping pour construire son produit. Derrière ce joli mot, la pratique consiste à moissonner des contenus en ligne, sauf que cette récolte consiste à ramasser le blé qui a poussé sur les sites web des autres, sans le consentement des sites que l’on pille ni celui des utilisateurs dont on vole les données. En juin 2017, une première version de l’outil de recherche de visage est lancée, après avoir pillé quelque 2,1 millions de visages provenant de plusieurs services en ligne, comme Tinder. À la fin 2018, elle comportera plus de 2 milliards d’images. L’entreprise qui a changé de nom pour Clearview, dispose alors d’un produit robuste. Seuls Facebook et Google disposent de plus de portraits que lui.

Certes, Clearview a volé toutes les images disponibles. Facebook, Google ou Linked-in vont officiellement protester et demander l’effacement des images volées. Reste que les géants n’intentent aucun procès à la startup. Il faut dire que les entreprises de la Tech sont en effet refroidies par les échecs de Linked-in à lutter contre le scraping. Dans un bras de fer avec une entreprise qui a moissonné les données du réseau social, Linked-in a été débouté en 2017 par un jugement confirmé en appel en 2019. Le tribunal de Californie a déclaré qu’il était légal de collecter des informations publiques disponibles sur le net. Le jugement a gelé les ardeurs des géants à lutter contre un phénomène… qu’ils pratiquent eux-mêmes très largement.

Hill pointe également que Ton-That n’est pas un génie du développement. Comme nombre d’ingénieurs, non seulement il vole les données, mais il a recours à des outils existants pour développer son application, comme OpenFace. Ton-That n’a pas d’états d’âme. Si les géants de la Tech refusent de sortir un produit de réidentification, c’est parce qu’ils ont peur des retombées désastreuses d’un tel outil, en termes d’image. Ce n’est pas le cas de Ton-That.

Reste que c’est bien la qualité de l’application qui va convaincre. Clearview permet d’identifier des gens dans la foule quelles que soient les conditions (ou presque). Pour tous ceux qui l’essayent, l’application semble magique. C’est à ce moment que les investisseurs et les clients se précipitent… D’abord et avant tout des investisseurs libertariens, très marqués politiquement. Pourtant, ceux-ci sont conscients que l’application risque d’avoir des problèmes avec les régulateurs et va s’attirer des poursuites en justice. Mais le risque semble plutôt les convaincre d’investir. Hill sous-entend par là un autre enjeu majeur : l’investissement s’affole quand les produits technologiques portent des enjeux de transformation légale. Si les capitaux-risqueurs ont tant donné à Uber, c’est certainement d’abord parce que l’entreprise permettait d’agir sur le droit du travail, en le contournant. C’est l’enjeu de modification des règles et des normes que promettent les outils qui muscle l’investissement. C’est parce que ces technologies promettent un changement politique qu’elles sont financées. Pour les investisseurs de Clearview, « pénétrer dans une zone de flou juridique constitue un avantage commercial ». Hill suggère une fois encore une règle importante. L’investissement technologique est bien plus politique qu’on ne le pense. 

Mais, il n’y a pas que les investisseurs qui vont voir dans Clearview un outil pour contourner les normes. Ses clients également. 

Après avoir tenté d’élargir le recrutement de premiers clients, Clearview va le resserrer drastiquement. Au-delà du symbole, son premier client va être la police de New York. Mais là encore, Clearview ne rencontre pas n’importe quels policiers. L’entreprise discute avec des officiers qui ont soutenu les théories problématiques de la vitre brisée, des officiers qui ont promu le développement du Big data dans la police et notamment les systèmes tout aussi problématiques de police prédictive. C’est donc par l’entremise de policiers radicaux, eux aussi très marqués à droite, que Clearview signe, en décembre 2018, un contrat avec la police de New York. Le contrat demande que l’entreprise prenne des engagements en matière de sécurité et de contrôle des agents qui l’utilisent. Le nombre de requêtes sur l’application décolle. Pourtant, après 6 mois de tests et plus de ² requêtes, la police de New York renonce à poursuivre le contrat. Elle aussi est inquiète de la perception par l’opinion publique. Sa direction a plus de pudeurs que les officiers qui ont permis le rapprochement entre la startup et la police. D’autres départements de police n’auront pas ces pudeurs. L’Indiana, la Floride, le Tennessee vont se mettre à utiliser Clearview. Viendront Londres puis le Département américain de la sécurité intérieure. Des agences du monde entier testent l’outil et l’adoptent : Interpol, la police australienne, canadienne… Clearview multiplie les contrats alors que l’entreprise est encore totalement inconnue du grand public. Malgré ces contrats publics, l’entreprise reste sous les radars. Assurément, parce que son usage permet là aussi pour ses clients de s’affranchir des règles, des normes et des modalités d’examen public en vigueur. Alors que la reconnaissance faciale est une technologie sulfureuse, l’abonnement discret à Clearview permet de le rendre invisible. La zone de flou de légalité profite à tous.

Discrètement, la reconnaissance faciale est advenue

En 2017, un militant de l’ACLU entend parler de Rekognition, l’outil de reconnaissance faciale développé par Amazon et lance une campagne à son encontre. L’ACLU lance l’outil sur les photos de 535 membres du Congrès et en identifie faussement 28 comme des criminels connus des services de police. L’ACLU lance sa campagne pour interdire la surveillance des visages, que quelques villes adopteront, comme San Francisco ou Oakland. Pour Clearview, ces controverses sont préjudiciables. La startup va alors utiliser le même test sur son propre produit qui ne déclenche aucune erreur et identifie parfaitement les 535 membres du Congrès. D’ailleurs, quand on met une photo provenant du site This Person Does not exist dans Clearview, l’application ne produit aucun résultat !

Bien sûr, Kashmir Hill rappelle que des Américains qui ont été et continuent d’être indûment arrêtés à cause de la reconnaissance faciale. Mais ces rares exemples semblent n’avoir plus grand poids. Le Nist qui a testé quelque 200 algorithmes de reconnaissance faciale a montré qu’il y avait de fortes variations selon les produits.

En décembre 2021, Clearview a soumis son algorithme au NIST pour évaluation. Son logiciel de reconnaissance facial a obtenu parmi les meilleurs résultats.

Pour les médias, ces variations dans les résultats des outils de reconnaissance faciale montrent que la reconnaissance faciale est biaisée, mais elles montrent plutôt qu‘il y a de bons algorithmes et de mauvais. Le NIST dispose de 2 sortes de tests, le premier pour comparer deux images et déterminer si le système est capable d’identifier une même personne et le second pour chercher un visage particulier dans une base de données remplie de visages. Contrairement à ce que l’on pense, les pires biais se trouvent plutôt dans le premier cas, où les systèmes ont du mal avec à reconnaître les sujets féminin, noirs ou asiatiques. « Reste que, aussi précis qu’ils soient, les algorithmes de reconnaissance faciale déployés dans des sociétés inégalitaires et structurellement racistes vont produire des résultats racistes ». Les personnes faussement arrêtées par la reconnaissance faciale étaient toutes noires, rappelle Hill. Ce qui est une preuve supplémentaire, non seulement de ses défauts, mais plus encore de son ancrage idéologique.

L’exemple du développement de Clearview nous rappelle en tout cas qu’il n’y a pas de neutralité technologique. Les outils ne sont pas des outils qui dépendent des usages qu’on en fait, comme le dit l’antienne. Ils ont des fonctionnalités spécifiques qui embarquent des idéologies. L’essor de Clearview nous montre très bien qu’il est un instrument au service d’un projet politique. Et que quels que soient ses défauts ou ses qualités, la reconnaissance faciale sert des objectifs qui ne sont pas que ceux, financiers, d’une classe sociale qui a intérêt à son succès, mais bien avant tout, ceux, politiques, d’idéologues qui ont un projet. Et ce projet, on l’a vu, n’est pas celui de construire une société apaisée, mais son exact contraire : faire avancer, dans l’ombre, les technologies nécessaires à l’avènement de la dissolution de l’Etat de droit.

(à suivre)


19.05.2025 à 07:42

Khrys’presso du lundi 19 mai 2025

Khrys

Comme chaque lundi, un coup d’œil dans le rétroviseur pour découvrir les informations que vous avez peut-être ratées la semaine dernière. Tous les liens listés ci-dessous sont a priori accessibles librement. Si ce n’est pas le cas, pensez à activer … Lire la suite­­
Texte intégral (10059 mots)

Comme chaque lundi, un coup d’œil dans le rétroviseur pour découvrir les informations que vous avez peut-être ratées la semaine dernière.


Tous les liens listés ci-dessous sont a priori accessibles librement. Si ce n’est pas le cas, pensez à activer votre bloqueur de javascript favori ou à passer en “mode lecture” (Firefox) ;-)

Brave New World

Spécial IA

Spécial Palestine et Israël

Spécial femmes dans le monde

Spécial France

Spécial femmes en France

RIP

Le rapport de la semaine

Spécial médias et pouvoir

Spécial emmerdeurs irresponsables gérant comme des pieds (et à la néolibérale)

Spécial recul des droits et libertés, violences policières, montée de l’extrême-droite…

Spécial résistances

Spécial outils de résistance

Spécial GAFAM et cie

Les autres lectures de la semaine

Les BDs/graphiques/photos de la semaine

Les vidéos/podcasts de la semaine

Les trucs chouettes de la semaine

Retrouvez les revues de web précédentes dans la catégorie Libre Veille du Framablog.

Les articles, commentaires et autres images qui composent ces « Khrys’presso » n’engagent que moi (Khrys).


18.05.2025 à 09:00

La reconnaissance faciale, l’enjeu du siècle

Framasoft

« Le plus grand danger de la reconnaissance faciale vient du fait qu’elle fonctionne plutôt très bien ».
Texte intégral (4346 mots)

Cet article est une republication, avec l’accord de l’auteur, Hubert Guillaud. Il a été publié en premier le 10 février 2025 sur le site Dans Les Algorithmes sous licence CC BY-NC-SA.


« Le plus grand danger de la reconnaissance faciale vient du fait qu’elle fonctionne plutôt très bien ».

 

 

 

 

 

 

 

 

Avec cet article, nous nous lançons dans un dossier que nous allons consacrer à la reconnaissance faciale et au continuum sécuritaire. Première partie.

Your face belongs to us (Random House, 2023), le livre que la journaliste du New York Times, Kashmir Hill, a consacré à Clearview, l’entreprise leader de la reconnaissance faciale, est une plongée glaçante dans la dystopie qui vient.

Jusqu’à présent, j’avais tendance à penser que la reconnaissance faciale était problématique d’abord et avant tout parce qu’elle était défaillante. Elle est « une technologie qui souvent ne marche pas », expliquaient Mark Andrejevic et Neil Selwyn (Facial Recognition, Wiley, 2022), montrant que c’est souvent dans son implémentation qu’elle défaille. La juriste, Clare Garvie, faisait le même constat. Si l’authentification (le fait de vérifier qu’une personne est la même que sur une photo) fonctionne mieux que l’identification (le fait de retrouver une personne dans une banque d’image), les deux usages n’ont cessé ces dernières années de montrer leurs limites.

Mais les choses évoluent vite.

La couverture du livre de Kashmir Hill.Le titre est « Your face belongs to us ». Son sous-titre : « A secretive startup's quest to end privacy as we know it ». Le fond de la couverture est une photo d'une partie des visages de deux personnes, floutées.

L’une des couvertures du livre de Kashmir Hill.

« Le plus grand danger de la reconnaissance faciale vient du fait qu’elle fonctionne plutôt très bien »

Dans leur livre, AI Snake Oil, les spécialistes de l’intelligence artificielle, Arvind Narayanan et Sayash Kapoor, soulignent pourtant que le taux d’erreur de la reconnaissance faciale est devenu négligeable (0,08 % selon le NIST, l’Institut national des normes et de la technologie américain). « Quand elle est utilisée correctement, la reconnaissance faciale tend à être exacte, parce qu’il y a peu d’incertitude ou d’ambiguïté dans la tâche que les machines doivent accomplir ». Contrairement aux autres formes d’identification (identifier le genre ou reconnaître une émotion, qui sont bien plus sujettes aux erreurs), la différence cruciale c’est que l’information requise pour identifier des visages, pour les distinguer les uns des autres, est présente dans les images elles-mêmes. « Le plus grand danger de la reconnaissance faciale vient du fait qu’elle fonctionne plutôt très bien » et c’est en cela qu’elle peut produire énormément de dommages.

Le risque que porte la reconnaissance faciale repose tout entier dans la façon dont elle va être utilisée. Et de ce côté-là, les dérives potentielles sont innombrables et inquiétantes. Gouvernements comme entreprises peuvent l’utiliser pour identifier des opposants, des personnes suspectes mais convaincues d’aucuns délits. Certes, elle a été utilisée pour résoudre des affaires criminelles non résolues avec succès. Certes, elle est commode quand elle permet de trier ou d’organiser ses photos… Mais si la reconnaissance faciale peut-être hautement précise quand elle est utilisée correctement, elle peut très facilement être mise en défaut dans la pratique. D’abord par ses implémentations qui peuvent conduire à y avoir recours d’une manière inappropriée et disproportionnée. Ensuite quand les images ne sont pas d’assez bonnes qualités, au risque d’entraîner tout le secteur de la sécurité dans une course sans limites à toujours plus de qualité, nécessitant des financements disproportionnés et faisant peser un risque totalitaire sur les libertés publiques. Pour Narayanan et Kapoor, nous devons avoir un débat vigoureux et précis pour distinguer les bons usages des usages inappropriés de la reconnaissance faciale, et pour développer des gardes-fous pour prévenir les abus et les usages inappropriés tant des acteurs publics que privés.

Certes. Mais cette discussion plusieurs fois posée n’a pas lieu. En 2020, quand la journaliste du New York Times a commencé ses révélations sur Clearview, « l’entreprise qui pourrait mettre fin à la vie privée », le spécialiste de la sécurité, Bruce Schneier avait publié une stimulante tribune pour nous inviter à réglementer la ré-identification biométrique. Pour lui, nous devrions en tant que société, définir des règles pour déterminer « quand une surveillance à notre insu et sans notre consentement est permise, et quand elle ne l’est pas », quand nos données peuvent être combinées avec d’autres et quand elles ne peuvent pas l’être et enfin savoir quand et comment il est permis de faire de la discrimination biométrique et notamment de savoir si nous devons renforcer les mesures de luttes contre les discriminations qui vont se démultiplier avec cette technologie et comment. En France, à la même époque, le sociologue Laurent Mucchielli qui avait fait paraître son enquête sur la vidéosurveillance (Vous êtes filmés, Dunod, 2018 – voir notre compte-rendu de l’époque, désabusé), posait également sur son blog des questions très concrètes sur la reconnaissance faciale : « Quelle partie de la population serait fichée ? Et qui y aurait accès ? Voilà les deux problèmes. » Enfin, les deux professeurs de droit, Barry Friedman (auteur de Unwarranted : policing without permission, 2017) et Andrew Guthrie Ferguson, (auteur de The Rise of Big Data policing, 2017) condamnaient à leur tour, dans une tribune pour le New York Times, « la surveillance des visages » (c’est-à-dire, l’utilisation de la reconnaissance faciale en temps réel pour trouver où se trouve quelqu’un) mais reconnaissaient que l’identification faciale (c’est-à-dire la réidentification d’un criminel, uniquement pour les crimes les plus graves), elle, pourrait être autorisée. Ils y mettaient néanmoins une condition : la réidentification des visages ne devrait pas être autorisée sans décision de justice et sans sanction en cas d’utilisation abusive. Mais, à nouveau, ce n’est pas ce qui s’est passé. La reconnaissance faciale s’est déployée sans contraintes et sans limites.

Les dénonciations comme les interdictions de la reconnaissance faciale sont restées éparses. Les associations de défense des libertés publiques ont appelé à des moratoires et mené des campagnes pour l’interdiction de la reconnaissance faciale, comme Ban Facial Recognition aux Etats-Unis ou Reclaim your face en Europe. Souvent, ces interdictions restent circonscrites à certains types d’usages, notamment les usages de police et de surveillance d’État, oubliant les risques que font courir les outils de surveillance privée.

Reste que le débat public sur son implémentation et ses modalités est inexistant. Au lieu de débats de sociétés, nous avons des « expérimentations » qui dérogent au droit, des déploiements épars et opaques (plus de 200 autorités publiques par le monde sont clientes de Clearview qui n’est qu’un outil parmi une multitude de dispositifs plus ou moins efficaces, allant de la reconnaissance faciale, à la vidéosurveillance algorithmique), et surtout, un immense déni sur les enjeux de ces technologies. Au final, nous ne construisons aucune règle morale sur son utilité ou son utilisation. Nous faisons collectivement l’autruche et son utilisation se déploie sans cadres légaux clairs dans un continuum de technologies sécuritaires et problématiques, allant des drones aux technologies de contrôle de l’immigration.

Une histoire de la reconnaissance faciale : entre amélioration par à-coups et paniques morales à chaque amélioration

Dans son livre, Your face belongs to us, Kashmir Hill alterne à la fois une histoire de l’évolution de la technologie et une enquête sur le développement de Clearview.

Sur cette histoire, Hill fait un travail qui met en exergue des moments forts. Elle rappelle d’abord que le terme de vie privée, définit à l’origine comme le droit d’être laissé tranquille par les juristes américains Samuel Warren et Louis Brandeis, était inspiré par la création de la pellicule photographique par Kodak, qui promettait de pouvoir sortir l’appareil photo des studios où il était jusqu’alors confiné par son temps de pause très long. Dans cette longue histoire de la reconnaissance faciale, Hill raconte notamment l’incroyable histoire du contrôle des tickets de trains américains dans les années 1880, où les contrôleurs poinçonnaient les tickets selon un codage réduit (de 7 caractéristiques physiques dont le genre, l’âge, la corpulence…) permettant aux contrôleurs de savoir si le billet contrôlé correspondait bien à la personne qui l’avait déjà présenté. Bien évidemment, cette reconnaissance humaine et basique causa d’innombrables contestations, tant ces appréciations d’un agent à un autre pouvaient varier. Mais la méthode aurait inspiré Herman Hollerith, qui va avoir l’idée de cartes avec des perforations standardisées et va adapter la machine pour le recensement américain, donnant naissance à l’entreprise qui deviendra IBM.

Hill surfe sur l’histoire de l’IA, des Perceptrons de Marvin Minsky, à Panoramic, l’entreprise lancée dans les années 60 par Woody Bledsoe, qui va être la première, à la demande de la CIA, à tenter de créer un outil de reconnaissance des visages simplifié, en créant une empreinte de visages comme autant de points saillants. Elle raconte que les améliorations dans le domaine vont se faire avec l’amélioration de la qualité et de la disponibilité des images et de la puissance des ordinateurs, à l’image des travaux de Takeo Kanade (dans les années 70, pour l’entreprise japonaise NEC), puis de Matthew Turk qui va bénéficier de l’amélioration de la compression des images. Accusé d’être à la tête d’un programme Orwellien, Turk s’en défendra pourtant en soulignant qu’enregistrer les informations sur les gens qui passent devant une caméra est surtout bénin. À croire que notre déni sur les conséquences de cette technologie remonte à loin.

En 2001, lors du Super Bowl, plusieurs entreprises, dont Viisage Technology et Raytheon, communiquent sur le fait qu’elles ont sécurisé l’accès au stade grâce à la reconnaissance faciale, identifiant 19 spectateurs avec un passé criminel. Viisage a récupéré la technologie de Turk et l’a commercialisé pour des badges d’identification pour entreprises. Ces déploiements technologiques, financés par les agences fédérales, commencent à inquiéter, notamment quand on apprend que des entreprises y ont recours, comme les casinos. Reste que la technologie est encore largement défaillante et peine bien souvent à identifier quiconque.

Mais le 11 septembre a changé la donne. Le Patriot Act permet aux agences du gouvernement d’élargir leurs accès aux données. Joseph Atick, cofondateur de Visionics, une autre entreprise du secteur, propose sa technologie aux aéroports pour rassurer les voyageurs. Il sait que celle-ci n’est pas au point pour identifier les terroristes, mais il a besoin des données pour améliorer son logiciel. Bruce Schneider aura beau dénoncer le « théâtre de la sécurité » , l’engrenage sécuritaire est lancé… Face à ses déploiements, les acteurs publics ont besoin d’évaluer ce qu’ils achètent. Jonathon Philips du National Institute of Standards and Technology (Nist) créée une base de données de visages de très bonne qualité sous différents angles, « Feret », pour tester les outils que vendent les entreprises. Il inaugure un concours où les vendeurs de solutions sont invités à montrer qui parvient à faire le mieux matcher les visages aux photos. En 2001, le premier rapport du Nist montre surtout qu’aucune entreprise n’y parvient très bien. Aucune entreprise n’est capable de déployer un système efficace, mais cela ne va pas les empêcher de le faire. Les meilleures entreprises, comme celle d’Atick, parviennent à faire matcher les photos à 90 %, pour autant qu’elles soient prises dans des conditions idéales. Ce qui tient surtout de l’authentification faciale fonctionne également mieux sur les hommes que sur les femmes, les personnes de couleurs ou les jeunes. En 2014, le FBI lance à son tour un concours pour rendre sa base d’images de criminels cherchable, mais là encore, les résultats sont décevants. La technologie échoue dès qu’elle n’est pas utilisée dans des conditions idéales.

En 2006, le juriste de l’ACLU James Ferg-Cadima découvre dans une grande surface la possibilité de payer depuis son empreinte digitale. Face à de tels dispositifs, s’inquiète-t-il, les consommateurs n’ont aucun moyen de protéger leurs empreintes biométriques. Quand son mot de passe est exposé, on peut en obtenir un nouveau, mais nul ne peut changer son visage ou ses empreintes. Le service « Pay by Touch », lancé en 2002 fait faillite en 2007, avec le risque que sa base d’empreintes soit vendue au plus offrant ! Avec l’ACLU, Ferg-Cadima œuvre alors à déployer une loi qui oblige à recevoir une permission pour collecter, utiliser ou vendre des informations biométriques : le Biometric Information Privacy Act (Bipa) que plusieurs Etats vont adopter.

En 2009, Google imagine des lunettes qui permettent de lancer une recherche en prenant une photo, mais s’inquiète des réactions, d’autant que le lancement de Street View en Europe a déjà terni son image de défenseur de la vie privée. La fonctionnalité de reconnaissance faciale existe déjà dans Picasa, le service de stockage d’images de Google, qui propose d’identifier les gens sur les photos et que les gens peuvent labelliser du nom de leurs amis pour aider le logiciel à progresser. En 2011, la fonctionnalité fait polémique. Google l’enterre.

À la fin des années 90, l’ingénieur Henry Schneiderman accède à Feret, mais trouve que la base de données est trop parfaite pour améliorer la reconnaissance faciale. Il pense qu’il faut que les ordinateurs soient d’abord capables de trouver un visage dans les images avant qu’ils puissent les reconnaître. En 2000, il propose d’utiliser une nouvelle technique pour cela qui deviendra en 2004, PittPatt, un outil pour distinguer les visages dans les images. En 2010, le chercheur Alessandro Acquisti, fasciné par le paradoxe de la vie privée, lance une expérience en utilisant PittPatt et Facebook et montre que ce croisement permet de ré-identifier tous les étudiants qui se prêtent à son expérience, même ceux qui n’ont pas de compte Facebook, mais qui ont été néanmoins taggés par leurs amis dans une image. Acquisti prédit alors la « démocratisation de la surveillance » et estime que tout le monde sera demain capable d’identifier n’importe qui. Pour Acquisti, il sera bientôt possible de trouver le nom d’un étranger et d’y associer alors toutes les données disponibles, des sites web qu’il a visité à ses achats en passant par ses opinions politiques… et s’inquiète du fait que les gens ne pourront pas y faire grand-chose. Pour le professeur, d’ici 2021 il sera possible de réidentifer quelqu’un depuis son visage, prédit-il. Acquisti s’est trompé : la fonctionnalité a été disponible bien plus tôt !

En 2011, PittPatt est acquise par Google qui va s’en servir pour créer un système pour débloquer son téléphone. En décembre 2011, à Washington se tient la conférence Face Facts, sponsorisée par la FTC qui depuis 2006 s’est doté d’une petite division chargée de la vie privée et de la protection de l’identité, quant, à travers le monde, nombre d’Etats ont créé des autorités de la protection des données. Si, suite à quelques longues enquêtes, la FTC a attaqué Facebook, Google ou Twitter sur leurs outils de réglages de la vie privée défaillants, ces poursuites n’ont produit que des arrangements amiables. À la conférence, Julie Brill, fait la démonstration d’un produit de détection des visages que les publicitaires peuvent incorporer aux panneaux publicitaires numériques urbains, capable de détecter l’âge où le genre. Daniel Solove fait une présentation où il pointe que les Etats-Unis offrent peu de protections légales face au possible déploiement de la reconnaissance faciale. Pour lui, la loi n’est pas prête pour affronter le bouleversement que la reconnaissance faciale va introduire dans la société. Les entreprises se défendent en soulignant qu’elles ne souhaitent pas introduire de systèmes pour dé-anonymiser le monde, mais uniquement s’en servir de manière inoffensive. Cette promesse ne va pas durer longtemps…

En 2012, Facebook achète la startup israélienne Face.com et Zuckerberg demande aux ingénieurs d’utiliser Facebook pour « changer l’échelle » de la reconnaissance faciale. Le système de suggestions d’étiquetage de noms sur les photos que les utilisateurs chargent sur Facebook est réglé pour n’identifier que les amis, et pas ceux avec qui les utilisateurs ne sont pas en relation. Facebook assure que son outil ne sera jamais ouvert à la police et que le réseau social est protégé du scraping. On sait depuis que rien n’a été moins vrai. Après 5 ans de travaux, en 2017, un ingénieur de Facebook provenant de Microsoft propose un nouvel outil à un petit groupe d’employés de Facebook. Il pointe la caméra de son téléphone en direction d’un employé et le téléphone déclame son nom après l’avoir reconnu.

À Stanford, des ingénieurs ont mis au point un algorithme appelé Supervision qui utilise la technologie des réseaux neuronaux et qui vient de remporter un concours de vision par ordinateur en identifiant des objets sur des images à des niveaux de précision jamais atteints. Yaniv Taigman va l’utiliser et l’améliorer pour créer DeepFace. En 2014, DeepFace est capable de faire matcher deux photos d’une même personne avec seulement 3 % d’erreurs, même si la personne est loin dans l’image et même si les images sont anciennes. En 2015, DeepFace est déployé pour améliorer l’outil d’étiquetage des images de Facebook.

En 2013, les révélations d’Edward Snowden changent à nouveau la donne. D’un coup, les gens sont devenus plus sensibles aux incursions des autorités à l’encontre de la vie privée. Pourtant, malgré les efforts de militants, le Congrès n’arrive à passer aucune loi à l’encontre de la reconnaissance faciale ou de la protection de la vie privée. Seules quelques villes et États ont musclé leur législation. C’est le cas de l’Illinois où des avocats vont utiliser le Bipa pour attaquer Facebook accusé d’avoir créé une empreinte des visages des 1,6 millions d’habitants de l’Etat.

Cette rapide histoire, trop lacunaire parfois, semble s’arrêter là pour Hill, qui oriente la suite de son livre sur le seul Clearview. Elle s’arrête effectivement avec le déploiement de l’intelligence artificielle et des réseaux de neurones qui vont permettre à la reconnaissance faciale de parvenir à l’efficacité qu’elle espérait.

Reste que cette rapide histoire, brossée à grands traits, souligne néanmoins plusieurs points dans l’évolution de la reconnaissance faciale. D’abord que la reconnaissance faciale progresse par vague technologique, nécessitant l’accès à de nouvelles puissances de calcul pour progresser et surtout l’accès à des images en quantité et en qualité.

Ensuite, que les polémiques et paniques nourrissent les projets et les relancent plutôt que de les éteindre. Ceux qui les développent jouent souvent un jeu ambivalent, minimisant et dissimulant les capacités des programmes qu’ils déploient.

Enfin, que les polémiques ne permettent pas de faire naître des législations protectrices, comme si la législation était toujours en attente que la technologie advienne. Comme si finalement, il y avait toujours un enjeu à ce que la législation soit en retard, pour permettre à la technologie d’advenir.

(à suivre)


14.05.2025 à 10:02

FramIActu n°4 — La revue mensuelle sur l’actualité de l’IA

Framasoft

Semaine après semaine, l'actualité autour de l'Intelligence Artificielle défile, et si pour autant nous ne voyons pas plus clairement le cap que nous devons suivre, nous percevons de mieux en mieux les remous qui nous entourent. Préparez votre boisson préférée et installez-vous confortablement : c'est l'heure de la FramIActu !
Texte intégral (2932 mots)

Bienvenue à toutes et tous pour ce quatrième numéro de la FramIActu !

Semaine après semaine, l’actualité autour de l’Intelligence Artificielle défile, et si pour autant nous ne voyons pas plus clairement le cap que nous devons suivre, nous percevons de mieux en mieux les remous qui nous entourent.

Préparez votre boisson préférée et installez-vous confortablement : c’est l’heure de la FramIActu !

 

Le dessin d'un perroquet Ara, avec un remonteur mécanique dans son dos, comme pour les jouets ou les montres. Celui si est assis et semble parler.

Stokastik, la mascotte de FramamIA, faisant référence au perroquet stochastique. Illustration de David Revoy – Licence : CC-By 4.0

Une dépendance trop forte aux modélisations par IA est mauvaise pour la science

Dans un article paru le 07 avril 2025 dans Nature (accès payant, malheureusement), des chercheureuses démontrent que la dépendance excessive aux modélisations par IA nuit à la recherche scientifique.
Dans cette étude, nous apprenons que de nombreux champs de recherche (au moins une trentaine sont concernés, allant de la psychiatrie à la biologie moléculaire) sont affectés par des études basées sur des modélisations faites par IA dont les résultats sont erronés.

À titre d’exemple, les chercheureuses indiquent que durant la pandémie du COVID-19, 415 études ont avancé qu’une radiographie de la poitrine ou une tomodensitométrie pourraient diagnostiquer la maladie. Or, seulement 62 de ces études respectaient un standard de qualité suffisant et même parmi celles-ci, des défauts étaient très répandus, incluant des méthodes d’évaluation bancales, des données dupliquées et un manque de clarté concernant les cas « positifs », certaines études ne précisant pas si ces cas provenaient bien de personnes ayant un diagnostic médical confirmé.

Les auteurices de l’étude se plaignent aussi de la difficulté à reproduire les résultats des études (la reproductibilité étant une condition essentielle à la méthode scientifique) utilisant des IA basées sur de grands modèles de langage. Ces modèles sont très sensibles aux entrées : de tous petits changements de formulations lors de la requête peut générer une réponse très différente.
De plus, les modèles appartenant le plus souvent à des compagnies privées, il est très difficile de pouvoir y accéder rendant des études basées sur ceux-ci difficiles à reproduire.
D’autant plus que des mises à jour des modèles surviennent régulièrement, sans que les chercheureuses n’aient été notifié·es.

Mème. À gauche, une carte Uno avec marqué « Fais des études reproductibles ou pioche 25 cartes ». À droite, un personnage tagué « Le monde de la recherche » a pioché 25 cartes.

Le monde de recherche et l’IA. Mème généré via Framamèmes. Licence : CC0

Les chercheureuses appuient donc sur la nécessité d’être vigilant·es concernant l’augmentation de recherches scientifiques liées au boom de l’IA. Même si celles-ci étaient sans erreur, elles ne sont pas forcément synonymes de réelles avancées scientifiques.
Bien que certaines modélisations trouvées par des recherches basées sur de l’IA peuvent être utiles, en tirer une conclusion scientifique permettant de mieux comprendre le réel est bien plus difficile et les chercheureuses invitent leurs collègues à ne pas se tromper.
Les boites à outils composées d’IA basées sur de l’apprentissage machine permettent de construire plus facilement des modélisations mais ne rendent pas nécessairement plus faciles l’extraction des savoirs sur le monde et peuvent même rendre celle-ci plus difficile.
Le risque est donc de produire plus mais de comprendre moins.

Les auteurices invitent en conclusion à séparer la production de résultats individuels du progrès scientifique. Pour cela, celleux-ci indiquent qu’il est nécessaire de rédiger des synthèses avec un discours moins systématique et plus critique qui questionne les méthodes acceptées, adopte différentes formes de preuves, se confronte à des affirmations supposément incompatibles et théorise les découvertes existantes.
Aussi, une prudence bien plus forte doit être apportée aux recherches basées sur des modèles d’IA, jusqu’à ce que les résultats de celles-ci puissent être rigoureusement reproduits.
Enfin, les chercheureuses encouragent les financeurs à financer des recherches de qualité plutôt que de se focaliser sur la quantité.

L’IA rate les diagnostics médicaux de femmes et personnes noires.

Dans une étude parue dans Science Advances, un groupe de chercheureuses dévoile (sans grande surprise, avouons-le) qu’un des modèles d’IA les plus utilisés pour faire de la radiologie des poitrines à la recherche de maladies ne détecte pas correctement certain·es maladies potentiellement mortelles pour les groupes marginalisés (dont les femmes et les personnes noires).

Judy Gichoya, une informaticienne et radiologiste qui n’est pas impliquée dans l’étude, appuie sur la difficulté de réduire ces biais. Elle propose de s’appuyer sur des jeux de données plus petits mais plus diversifiés et de résoudre leurs défauts petit à petit.

L’étude s’inscrit dans un contexte où l’utilisation dans des contextes médicaux s’accélère et appuie ainsi sur la nécessité de toujours garder un regard humain sur les diagnostics et de ne jamais faire aveuglément confiance en les résultats fournis par une IA.

L'IA qui rend son diagnostique.Généré avec Framamemes. CC-0

L’IA rend son diagnostic.
Généré avec Framamemes. Licence : CC-0

De notre point de vue, la grande difficulté de la résolution des biais dans l’IA est liée à une volonté politique et financière : si ce genre de méthode se généralise, il faudrait très certainement investir massivement dans la numérisation des réalités des minorités et faire un immense travail de fond pour en éliminer le maximum de biais.
Cela semble malheureusement aller à contre-courant de la tendance actuelle.

 

Des expert·es en sécurité informatique dévoilent comment l’IA « malveillante » impacte le domaine

Lors de la conférence RSA, dédiée à la sécurité informatique, des expert·es du domaine ont dévoilé la puissance d’outils comme WormGPT pour découvrir des failles de sécurité et concevoir des attaques les exploitant.

WormGPT est un agent conversationnel ressemblant à ChatGPT mais n’ayant pas de modération. Celui-ci est aussi taillé pour la cybersécurité. On peut donc lui demander de fournir des réponses à tout, même à des choses illégales et/ou dangereuses.

Dans leur présentation, les informaticien·nes décrivent l’outil et ses capacités.
Celui-ci leur a permis de trouver rapidement des failles de sécurité dans un logiciel open source connu, mais aussi d’en générer des instructions claires permettant d’exploiter ces failles.

Les expert·es ont aussi cherché à faire générer directement le code par l’IA mais celui-ci n’était pas fonctionnel.
Ce dernier point sera très certainement amélioré au fil des prochains mois.

L’automatisation de l’analyse de failles informatiques a ainsi fait un bond conséquent en avant tout comme les capacités à les exploiter. Si des groupes de pirates se mettent à automatiser le processus, l’ensemble des systèmes informatiques risquent fort d’en pâtir.

D’un autre côté, si nous pouvons découvrir automatiquement des failles de sécurité dans nos logiciels, nous pouvons aussi chercher à les corriger avant qu’un·e attaquant·e ne les exploite.
L’utilisation de l’IA dans l’infrastructure entourant un logiciel semble donc presque inévitable de ce point de vue.

Enfin, nous pourrons aussi questionner ce que cela implique pour les développeur·euses modestes, notamment celleux partageant le code source de leur logiciel. Est-ce que la situation va ajouter encore plus de poids sur leurs épaules, leur demandant d’alourdir leur charge de travail (souvent bénévole) en mettant en place une infrastructure analysant les failles de sécurité et leur demandant de les résoudre au plus vite pour protéger leurs utilisateurices ?

L'image montre des briques reposant les unes sur les autres. L'ensemble de ces briques est taguée "All modern digital infrastructure". Une brique, sur laquelle repose tout l'équilibre de l'ensemble, est taguée "A project some random person in Nebraska has been Thanklessly maintaining since 2005".

Dependency – xkcd.
Licence : CC-BY-NC 2.5
Le célèbre xkcd représentant l’infrastructure du numérique moderne reposant entièrement sur une seule personne.

ChatGPT induit des psychoses à certain·es utilisateurices via ses réponses.

Dans un article de Rolling Stone, nous apprenons que des utilisateurices du média social Reddit décrivent comment l’IA a poussé leurs proches à adopter des délires, souvent basés sur des folies spirituelles ou des fantasmes surnaturels.

ChatGPT semble renforcer des psychoses chez certaines personnes, le plus souvent celles ayant déjà des tendances.
Interviewée par Rolling Stone, Erin Westgate, chercheuse en cognition, indique que certaines personnes utilisent ChatGPT comme « thérapie miroir ». Sauf que ChatGPT n’a pas pour préoccupation les intérêts de ces personnes.
Elle indique que des personnes utilisent ChatGPT pour trouver un sens à leur vie et ChatGPT leur recrache n’importe quelle explication trouvée un peu partout sur internet.

 

« Les explications sont puissantes, même si elles sont fausses » – Erin Westgate

Rappelons donc encore une fois que toute Intelligence Artificielle n’a aucune compréhension du réel et est surtout un système probabiliste. Une IA ne donnera jamais une réponse qu’elle considère être « vraie », c’est une notion inconnue pour elle. Elle donnera toujours une réponse qu’elle considère être « la plus probable » au regard de la manière dont elle a été entraînée et de l’historique de ses interactions avec l’utilisateur·ice.

Le dessin d'un perroquet Ara, avec un remonteur mécanique dans son dos, comme pour les jouets ou les montres. Accroché à son aile gauche, un ballon de baudruche.

Stokastik, la mascotte de FramamIA, faisant référence au perroquet stochastique. Illustration de David Revoy – Licence : CC-By 4.0

C’est tout pour ce mois-ci !

 

Cependant, si vous avez trouvé cette FramIActu trop courte et que vous êtes resté·e sur votre faim, vous pouvez vous mettre d’autres actualités sous la dent en consultant notre site de curation dédié au sujet, mais aussi et surtout FramamIA, notre site partageant des clés de compréhension sur l’IA !

Si nous pouvons vous proposer cette nouvelle revue mensuelle, c’est grâce à vos dons, Framasoft vivant presque exclusivement grâce à eux !
Pour nous soutenir et si vous en avez les moyens, vous pouvez nous faire un don via le formulaire dédié  !

Dans tous les cas, nous nous retrouverons le mois prochain pour un nouveau numéro de FramIActu ! 👋


6 / 20
 Persos A à L
Mona CHOLLET
Anna COLIN-LEBEDEV
Julien DEVAUREIX
Cory DOCTOROW
Lionel DRICOT (PLOUM)
EDUC.POP.FR
Marc ENDEWELD
Michel GOYA
Hubert GUILLAUD
Gérard FILOCHE
Alain GRANDJEAN
Hacking-Social
Samuel HAYAT
Dana HILLIOT
François HOUSTE
Tagrawla INEQQIQI
Infiltrés (les)
Clément JEANNEAU
Paul JORION
Michel LEPESANT
Frédéric LORDON
 
 Persos M à Z
Henri MALER
Christophe MASUTTI
Romain MIELCAREK
MONDE DIPLO (Blogs persos)
Richard MONVOISIN
Corinne MOREL-DARLEUX
Timothée PARRIQUE
Thomas PIKETTY
VisionsCarto
Yannis YOULOUNTAS
Michaël ZEMMOUR
LePartisan.info
 
  Numérique
Christophe DESCHAMPS
Louis DERRAC
Olivier ERTZSCHEID
Olivier EZRATY
Framablog
Francis PISANI
Pixel de Tracking
Irénée RÉGNAULD
Nicolas VIVANT
 
  Collectifs
Arguments
Bondy Blog
Dérivation
Dissidences
Mr Mondialisation
Palim Psao
Paris-Luttes.info
ROJAVA Info
 
  Créatifs / Art / Fiction
Nicole ESTEROLLE
Julien HERVIEUX
Alessandro PIGNOCCHI
XKCD
🌓