12.11.2025 à 12:22
Andor J. Kiss, Director of the Center for Bioinformatics and Functional Genomics, Miami University
James Dewey Watson est mort à l’âge de 97 ans, a annoncé le 7 novembre 2025 le Cold Spring Harbor Laborator. Co-découvreur de la structure de l’ADN et prix Nobel en 1962, a marqué à jamais la biologie moderne. Mais son héritage scientifique est indissociable des controverses qui ont entouré sa carrière et sa personnalité.
James Dewey Watson était un biologiste moléculaire américain, surtout connu pour avoir remporté conjointement le prix Nobel de physiologie ou de médecine en 1962 grâce à la découverte de la structure de l’ADN et de son rôle dans le transfert d’informations au sein des organismes vivants. L’importance de cette découverte ne saurait être exagérée. Elle a permis de comprendre le fonctionnement des gènes et donné naissance aux domaines de la biologie moléculaire et de la phylogénétique évolutive. Elle a inspiré et influencé ma carrière de scientifique ainsi que mes activités de directeur d’un centre de recherche en bioinformatique et en génomique fonctionnelle.
Personnalité provocatrice et controversée, il transforma la manière de transmettre la science. Il reste le premier lauréat du prix Nobel à offrir au grand public un aperçu étonnamment personnel et brut du monde impitoyable et compétitif de la recherche scientifique. James D. Watson est décédé le 6 novembre 2025 à l’âge de 97 ans.
Watson entra à l’université de Chicago à l’âge de 15 ans, avec l’intention initiale de devenir ornithologue. Après avoir lu le recueil de conférences publiques d’Erwin Schrödinger sur la chimie et la physique du fonctionnement cellulaire, intitulé What is Life ?, il se passionna pour la question de la composition des gènes – le plus grand mystère de la biologie à l’époque.
Les chromosomes, un mélange de protéines et d’ADN, étaient déjà identifiés comme les molécules de l’hérédité. Mais la plupart des scientifiques pensaient alors que les protéines, composées de vingt éléments constitutifs différents, étaient les meilleures candidates, contrairement à l’ADN qui n’en possédait que quatre. Lorsque l’expérience d’Avery-MacLeod-McCarty, en 1944, démontra que l’ADN était bien la molécule porteuse de l’hérédité, l’attention se concentra immédiatement sur la compréhension de cette substance.
Watson obtint son doctorat en zoologie à l’université de l’Indiana en 1950, puis passa une année à Copenhague pour y étudier les virus. En 1951, il rencontra le biophysicien Maurice Wilkins lors d’une conférence. Au cours de l’exposé de Wilkins sur la structure moléculaire de l’ADN, Watson découvrit les premières cristallographie par rayons X de l’ADN. Cette révélation le poussa à rejoindre Wilkins au laboratoire Cavendish de l’université de Cambridge pour tenter d’en percer le secret de la structure. C’est là que Watson fit la connaissance du physicien devenu biologiste Francis Crick, avec qui il noua immédiatement une profonde affinité scientifique.
Peu après, Watson et Crick publièrent leurs travaux fondateurs sur la structure de l’ADN dans la revue Nature en 1953. Deux autres articles parurent dans le même numéro, l’un coécrit par Wilkins, l’autre par la chimiste et cristallographe aux rayons X Rosalind Franklin.
C’est Franklin qui réalisa les cristallographies par rayons X de l’ADN contenant les données cruciales pour résoudre la structure de la molécule. Son travail, combiné à celui des chercheurs du laboratoire Cavendish, conduisit à l’attribution du prix Nobel de physiologie ou de médecine de 1962 à Watson, Crick et Wilkins.
Bien qu’ils aient eu connaissance des précieuses images de diffraction des rayons X de Franklin, diffusées dans un rapport interne du laboratoire Cavendish, ni Watson ni Crick ne mentionnèrent ses contributions dans leur célèbre article publié en 1953 dans Nature. En 1968, Watson publia un livre relatant les événements entourant la découverte de la structure de l’ADN tels qu’il les avait vécus, dans lequel il minimise le rôle de Franklin et la désigne avec des termes sexistes. Dans l’épilogue, il reconnaît finalement ses contributions, mais sans lui accorder le plein mérite de sa participation à la découverte.
À lire aussi : Rosalind Franklin : la scientifique derrière la découverte de la structure de l’ADN, bien trop longtemps invisibilisée
Certains historiens ont soutenu que l’une des raisons invoquées pour ne pas reconnaître officiellement le rôle de Franklin tenait au fait que son travail n’avait pas encore été publié et qu’il était considéré comme une « connaissance partagée » au sein du laboratoire Cavendish, où les chercheurs travaillant sur la structure de l’ADN échangeaient couramment leurs données. Cependant, l’appropriation des résultats de Franklin et leur intégration dans une publication officielle sans autorisation ni mention de son nom sont aujourd’hui largement reconnues comme un exemple emblématique de comportement déplorable, tant du point de vue de l’éthique scientifique que dans la manière dont les femmes étaient traitées par leurs collègues masculins dans les milieux professionnels.
Au cours des décennies qui ont suivi l’attribution du prix Nobel à Watson, Crick et Wilkins, certains ont érigé Rosalind Franklin en icône féministe. On ignore si elle aurait approuvé cette image, car il est difficile de savoir ce qu’elle aurait ressenti face à sa mise à l’écart du Nobel et face au portrait peu flatteur que Watson lui consacra dans son récit des événements. Ce qui est désormais incontestable, c’est que sa contribution fut décisive et essentielle, et qu’elle est aujourd’hui largement reconnue comme une collaboratrice à part entière dans la découverte de la structure de l’ADN.
Comment les attitudes et les comportements envers les jeunes collègues et les collaborateurs ont-ils évolué depuis ce prix Nobel controversé ? Dans de nombreux cas, les universités, les institutions de recherche, les organismes financeurs et les revues à comité de lecture ont mis en place des politiques formelles visant à identifier et reconnaître de manière transparente le travail et les contributions de tous les chercheurs impliqués dans un projet. Bien que ces politiques ne fonctionnent pas toujours parfaitement, le milieu scientifique a évolué pour fonctionner de manière plus inclusive. Cette transformation s’explique sans doute par la prise de conscience qu’un individu seul ne peut que rarement s’attaquer à des problèmes scientifiques complexes et les résoudre. Et lorsqu’un conflit survient, il existe désormais davantage de mécanismes officiels permettant de chercher réparation ou médiation.
Des cadres de résolution des différends existent dans les directives de publication des revues scientifiques, ainsi que dans celles des associations professionnelles et des institutions. Il existe également une revue intitulée Accountability in Research, « consacrée à l’examen et à l’analyse critique des pratiques et des systèmes visant à promouvoir l’intégrité dans la conduite de la recherche ». Les recommandations destinées aux chercheurs, aux institutions et aux organismes de financement sur la manière de structurer l’attribution des auteurs et la responsabilité scientifique constituent un progrès significatif en matière d’équité, de procédures éthiques et de normes de recherche.
J’ai moi-même connu des expériences à la fois positives et négatives au cours de ma carrière : j’ai parfois été inclus comme coauteur dès mes années de licence, mais aussi écarté de projets de financement ou retiré d’une publication à mon insu, alors que mes contributions étaient conservées. Il est important de noter que la plupart de ces expériences négatives se sont produites au début de ma carrière, sans doute parce que certains collaborateurs plus âgés pensaient pouvoir agir ainsi en toute impunité.
Il est également probable que ces expériences négatives se produisent moins souvent aujourd’hui, car je formule désormais clairement mes attentes en matière de co-signature dès le début d’une collaboration. Je suis mieux préparé et j’ai désormais la possibilité de refuser certaines collaborations.
Je soupçonne que cette évolution reflète ce que d’autres ont vécu, et qu’elle est très probablement amplifiée pour les personnes issues de groupes sous-représentés dans les sciences. Malheureusement, les comportements inappropriés, y compris le harcèlement sexuel, persistent encore dans ce milieu. La communauté scientifique a encore beaucoup de chemin à parcourir – tout comme la société dans son ensemble.
Après avoir co-découvert la structure de l’ADN, James Watson poursuivit ses recherches sur les virus à l’université Harvard et prit la direction du Cold Spring Harbor Laboratory, qu’il contribua à revitaliser et à développer considérablement, tant sur le plan de ses infrastructures que de son personnel et de sa réputation internationale. Lorsque le Projet génome humain était encore à ses débuts, Watson s’imposa comme un choix évident pour en assurer la direction et en accélérer le développement, avant de se retirer après un long conflit portant sur la possibilité de breveter le génome humain et les gènes eux-mêmes – Watson s’y opposait fermement.
En dépit du bien immense qu’il a accompli au cours de sa vie, l’héritage de Watson est entaché par sa longue série de propos publics racistes et sexistes, ainsi que par ses dénigrements répétés, tant personnels que professionnels, à l’encontre de Rosalind Franklin. Il est également regrettable que lui et Crick aient choisi de ne pas reconnaître pleinement tous ceux qui ont contribué à leur grande découverte aux moments décisifs.
Andor J. Kiss ne travaille pas, ne conseille pas, ne possède pas de parts, ne reçoit pas de fonds d'une organisation qui pourrait tirer profit de cet article, et n'a déclaré aucune autre affiliation que son organisme de recherche.
12.11.2025 à 12:21
Romain Garrouste, Chercheur à l’Institut de systématique, évolution, biodiversité (ISYEB), Muséum national d’histoire naturelle (MNHN)

Alors que s’ouvre l’exposition En voie d’illumination : Lumières de la Nature au Jardin des Plantes de Paris, plongez dans le monde fascinant des champignons bioluminescents.
Il y a des rencontres qui illuminent littéralement vos nuits. Un de ces derniers soirs d’automne, au détour d’un jardin du sud de la France et à la faveur du changement d’heure, j’ai remarqué une étrange lueur verte, douce, presque irréelle, au pied d’une vieille souche. Non, je ne rêvais pas : c’était bien un champignon qui luisait dans le noir. Il ne s’agissait pas d’un gadget tombé d’un sac d’enfant ou d’un reflet de la Lune, mais bien d’un organisme vivant, émettant sa propre lumière. Bienvenue dans le monde fascinant des champignons bioluminescents.
La bioluminescence est la production naturelle de lumière par un être vivant, sans illumination préalable et en cela diffère de la fluorescence ou de la phosphorescence qui ont besoin d’une source de lumière. On la connaît chez certains poissons abyssaux, des requins, des crevettes, du plancton ou chez les lucioles.
Mais les champignons, eux aussi, ont ce « superpouvoir ». Plus de 90 espèces sont aujourd’hui connues dans le monde, surtout en zones tropicales humides mais certaines, comme l’Omphalotus illudens, sont présentes chez nous, en Europe, et même dans les jardins du sud de la France où l’on trouve aussi Omphalotus olearius, souvent inféodé à l’Olivier mais pas uniquement. L’entomologiste Jean Henri Fabre la connaissait bien et cela a constitué sa première publication en 1856 sur les champignons.
La lumière fongique ne produit pas chaleur, elle est constante et le plus souvent verte. Elle provient d’une réaction chimique impliquant une molécule appelée luciférine, de l’oxygène, et une enzyme, la luciférase. Cette réaction produit de la lumière dans le vert (vers 520 nm). Le mécanisme, bien que désormais mieux compris, reste fascinant : une lumière sans électricité, sans feu, et pourtant visible à l’œil nu, dans le silence du sous-bois. La bioluminescence est donc une forme de chimioluminescence, puisqu’elle dépend d’une réaction chimique.
Chez les champignons, cette lumière n’est pas toujours visible partout : parfois seules les lamelles, d’autres fois le mycélium (le réseau souterrain de filaments) sont luminescents, ou les deux. Beaucoup d’espèces sont par contre fluorescentes aux UV. Comme nous l’avons dit la fluorescence diffère de la bioluminescence par la nécessité d’avoir une source lumineuse d’excitation qui va provoquer une luminescence dans une longueur d’onde différente. Ce sont des phénomènes très différents même s’ils sont souvent associés chez les organismes.
Pourquoi un organisme qui ne bouge pas et n’a pas d’yeux se donnerait-il la peine d’émettre de la lumière ? Plusieurs hypothèses ont été proposées comme attirer des insectes nocturnes pour disperser les spores, à l’image d’une enseigne clignotante dans la forêt. Une autre hypothèse est un effet secondaire métabolique, sans rôle adaptatif (ça fait moins rêver, mais cela reste peu probable). La dissuasion de prédateurs (insectes, petits rongeurs) grâce à cette signature visuelle inhabituelle a été également étudiée.
Une étude publiée dans Current Biology a montré que des insectes sont effectivement attirés par la lumière de certains champignons, renforçant l’idée d’une stratégie de dissémination.
L’espèce que vous avez peut-être déjà trouvé dans votre jardin, Omphalotus illudens (ou encore O. olearius dans le sud de la France) est remarquable à plus d’un titre. D’abord, parce qu’elle est toxique : ne vous fiez pas à sa belle couleur orangée et son odeur suave de sous-bois. Ensuite, parce qu’elle émet une lumière verte depuis ses lames, bien visible dans le noir complet. Ce phénomène est observable à l’œil nu si l’on s’éloigne des sources lumineuses parasites.
Ce champignon est de plus en plus étudié pour comprendre les variations génétiques liées à la bioluminescence entre espèces fongiques, et rechercher des molécules d’intérêt dans leur métabolisme, comme l’illudine, l’une des molécules à la base de leur toxicité, intéressante pour ses propriétés anticancéreuse.
Photographier ces champignons est un défi passionnant : il faut une longue pose, souvent au-delà de 30 secondes, un environnement très sombre, et parfois, un peu de chance. Mais l’image qui en résulte est souvent saisissante : un halo lumineux semblant flotter dans l’obscurité, témoin de la vitalité nocturne des sous-bois.
J’ai relevé le défi une fois de plus, comme la toute première fois dans une forêt du Vietnam sur une autre espèce ou récemment sur des litières en Guyane. Le défi est en fait double, détecter le phénomène et le photographier ensuite comme un témoignage fugace, un caractère discret qui disparaît à la mort de l’organisme.
Pour étudier ces phénomènes notre unité de recherche s’est dotée d’une plate-forme originale d’imagerie et d’analyse des phénomènes lumineux dans le vivant mais aussi pour explorer la géodiversité, par exemple dans les fossiles (pour la fluorescence) : le laboratoire de photonique 2D/3D de la biodiversité. Entre le vivant lors d’expéditions ou de missions de terrains pas forcément lointaine et les collections du MNHN, le registre de l’exploration de ces phénomènes est immense et nous l’avons juste commencé.
Outre son effet esthétique, la bioluminescence pourrait aussi être un marqueur de l’activité biologique : elle reflète le métabolisme actif de certains champignons en croissance, leur interaction avec le bois, la température, l’humidité. Certains chercheurs envisagent même d’utiliser ces espèces comme indicateurs écologiques.
Alors la prochaine fois que vous sortez de nuit, observez les bords des sentiers, les vieux troncs en décomposition… car parfois, la nature éclaire son propre théâtre. Et si un champignon vous fait de l’œil fluorescent, n’ayez pas peur : il est plus poétique que dangereux… sauf si vous le cuisinez. Mais n’oubliez pas d’éteindre votre lampe et d’aller loin des sources de pollution lumineuses.
Romain Garrouste a reçu des financements de : MNHN. CNRS, Sorbonne Université, IPEV, LABEx BCDiv, LABEx CEBA, MTE, MRAE, National Geographic, Institut de la Transition Environnementale et Institut de l'Océan (Sorbonne Univ.)
12.11.2025 à 12:21
Coralie Thieulin, Enseignant chercheur en physique à l'ECE, docteure en biophysique, ECE Paris
Greffer l’organe d’un animal à un être humain n’est plus de la science-fiction. Ces dernières années, plusieurs patients ont reçu un cœur, un rein ou même la peau d’un porc génétiquement modifié. Mais pourquoi choisir le cochon, plutôt qu’un autre animal ?
Le terme xénogreffe désigne la transplantation d’un tissu ou d’un organe provenant d’une espèce différente de celle du receveur, par exemple, d’un porc vers un humain. Elle se distingue de l’allogreffe, entre deux humains, et de l’autogreffe, utilisant les propres tissus du patient. L’objectif est de remédier à la pénurie chronique d’organes humains disponibles pour la transplantation, tout en garantissant la compatibilité et la sécurité du greffon.
En France, au 1er janvier 2025, 22 585 patients étaient inscrits sur la liste nationale d’attente pour une greffe, dont 11 666 en liste active. En 2024, 852 patients sont décédés en attendant une greffe.
C’est d’abord la peau qui a ouvert la voie. Depuis les années 1960, la peau de porc est utilisée comme pansement biologique temporaire pour les grands brûlés. Sa structure et son épaisseur sont étonnamment proches de celles de la peau humaine, ce qui permet une bonne adhérence et une protection efficace contre les infections et la déshydratation.
Contrairement à d’autres animaux (vache, mouton, lapin), la peau de porc présente un réseau de collagène (protéine structurelle présente dans le tissu conjonctif et responsable de la résistance et élasticité des tissus) et une densité cellulaire similaires à ceux de l’homme, limitant les réactions de rejet immédiat. Ces greffes ne sont toutefois que temporaires : le système immunitaire finit par les détruire. Néanmoins, elles offrent une protection temporaire avant une autogreffe ou une greffe humaine.
Au-delà de la peau, le cochon partage de nombreux points communs physiologiques avec l’être humain : taille des organes, rythme cardiaque, pression artérielle, composition du plasma, voire métabolisme. Le cœur d’un cochon adulte, par exemple, a des dimensions proches de celui d’un humain, ce qui en fait un candidat naturel pour les greffes.
D’autres espèces, comme les primates non humains, présentent une proximité génétique encore plus importante, mais leur utilisation soulève des questions éthiques et sanitaires beaucoup plus lourdes, sans parler de leur reproduction lente et de leur statut protégé.
Au contraire, les cochons sont faciles à élever, atteignent rapidement leur taille adulte, et leurs organes peuvent être obtenus dans des conditions sanitaires contrôlées. Les lignées génétiquement modifiées, comme celles développées par la société américaine Revivicor, sont désormais dépourvues de certains gènes responsables du rejet hyper aigu, ce qui rend leurs organes plus « compatibles » avec le système immunitaire humain.
Les chercheurs ont aussi supprimé des virus « dormants » (qui ne s’activent pas) présents dans le génome du porc, réduisant le risque de transmission d’agents infectieux à l’Homme.
Après la peau, les chercheurs se tournent vers les reins, le cœur, le foie ou encore le pancréas. En 2024, des patients ont survécu plusieurs semaines avec un cœur de porc génétiquement modifié, une prouesse longtemps jugée impossible. Des essais ont également été menés avec des reins de porc, notamment chez des patients en état de mort cérébrale ou, plus récemment, chez un patient vivant. En revanche, les recherches sur le foie et le pancréas en sont encore au stade préclinique, menées uniquement chez l’animal. Ces avancées ne sont pas seulement symboliques : la pénurie mondiale de donneurs humains pousse la médecine à explorer des alternatives réalistes.
Cependant, le défi immunologique reste immense – même génétiquement modifiés, les organes porcins peuvent être rejetés par le système immunitaire humain – tout comme les enjeux éthiques liés notamment au bien-être animal.
Le cochon s’est imposé non par hasard, mais parce qu’il représente un compromis entre proximité biologique, faisabilité et acceptabilité sociale. Si les essais confirment la sécurité et la durabilité des greffes, le porc pourrait bientôt devenir un allié inattendu mais essentiel de la médecine humaine.
Coralie Thieulin ne travaille pas, ne conseille pas, ne possède pas de parts, ne reçoit pas de fonds d'une organisation qui pourrait tirer profit de cet article, et n'a déclaré aucune autre affiliation que son organisme de recherche.