30.06.2021 à 07:00
Hubert Guillaud
Dans une longue interview pour le magazine belge Agir par la culture (@agirparculture), je tente de poser des pistes pour repolitiser la question numérique…
À l’heure où les réponses légales sont trop mouvantes, où les réponses techniques sont contournables, où les réponses économiques ne concernent pas du tout les déploiements techniques, où les réponses éthiques sont limitées, comment contenir ce que le numérique optimise trop bien ? Comment limiter et contraindre le délire calculatoire qui vient ?
« L’enjeu à venir à nouveau consiste à faire des choix de société sur ce que nous devons numériser, ce que nous devons dénumériser et comment. Mais la réponse à ces questions n’est pas numérique, mais bien politique : comment étendre les protections sociales et environnementales ? Que devons-nous définancer ? Que devons-nous refuser de moderniser ? Où devons-nous désinnover ? Si on regarde le monde numérique à l’aune de sa durabilité, ce monde n’est pas soutenable. Si on le regarde à l’aune de ses enjeux démocratiques ou sociaux, le numérique ne produit pas un monde en commun. Il va donc falloir refermer des possibles que le numérique a ouverts. La surveillance, la fausse efficacité qu’elle promet ne propose que du contrôle, de la répression, des discriminations, de la sécurité au détriment de la liberté, de l’équité, de l’égalité. On ne fait pas société seulement en calculant son efficacité maximale ! »
En espérant que cette contribution livre quelques pistes d’action !
Hubert Guillaud
28.06.2021 à 07:00
Hubert Guillaud
En 2019, pour le magazine Commune, l’ingénieur et membre de la coalition des travailleurs de la tech (@techworkersco – voir également Collective Action In Tech et @tech_actions) Jimmy Wu (@jimmywu) revenait sur la question de l’optimisation. Qu’est-ce que le numérique optimise ?
Alors que la tech rencontre une contestation inédite, l’éthique de la technologie bénéficie d’un vif regain d’intérêt, explique Wu. Le but : apporter aux professionnels de la technologie une conscience sociale… pour redresser la crédibilité du secteur ! « Pourtant, en positionnant l’éthique comme la boussole morale de la technologie, l’informatique académique nie le fait que ses propres outils intellectuels sont la source du pouvoir dangereux de l’industrie technologique ». Pour Wu, le problème réside dans l’idéologie même de la tech. « Ce n’est pas seulement que l’enseignement de l’ingénierie apprend aux étudiants à penser que tous les problèmes méritent des solutions techniques (ce qui est certainement le cas) ; le programme est surtout construit autour de tout un système de valeurs qui ne connaît que les fonctions d’utilité, les manipulations symboliques et la maximisation des objectifs. »
Wu raconte avoir assisté au premier cours sur l’éthique des données proposé par Stanford au printemps 2018. Dans un exercice proposé aux élèves, l’enjeu était d’interroger un jeu de données provenant d’un site web qui avait révélé les noms des donateurs à des organisations qui soutenaient le seul mariage hétérosexuel. Les étudiants étaient appelés à faire des propositions pour résoudre le problème. Pour Wu pourtant, le problème n’était pas la question de la granularité des données (c’est-à-dire jouer sur la visibilité du montant des dons par exemple, comme de faire passer l’obligation d’afficher les noms des donateurs à partir d’un montant plus élevé pour éviter qu’ils soient pointés du doigt, comme le proposaient des étudiants) qu’un enjeu politique qui consiste à organiser la politique depuis des dons financiers. Cette proposition à sortir du seul cadre des paramètres accessibles a mis fin aux discussions. Pour Wu, ce petit exemple illustre à lui seul « l’idéologie du statu quo » qui structure l’enseignement de l’informatique. C’est comme si en informatique, l’enjeu premier était de ne pas prendre parti ou de ne pas faire de politique… Comme si tout n’était question que de paramètres à régler.
La science informatique a visiblement largement intégré la discipline de l’esprit qu’évoquait Jeff Schmidt dans son Disciplined Minds (2000, non traduit), un livre qui critiquait justement la socialisation et la formation des professionnels qui consiste trop souvent à ne pas faire de vagues. En 4 ans d’informatique à Berkeley et Stanford, rapporte Wu, à l’exception d’un cours d’éthique, les enseignants ne nous ont jamais suggéré d’examiner de manière critique les problèmes techniques, souligne-t-il. « Les questions dites « douces » sur la société, l’éthique, la politique et l’humanité étaient silencieusement considérées comme intellectuellement inintéressantes. Elles étaient indignes de nous en tant que scientifiques ; notre travail consistait à résoudre les problèmes qui nous étaient soumis, et non à nous demander quels problèmes nous devions résoudre en premier lieu. Et nous avons appris à le faire bien trop bien. »
Pour Wu, l’enseignement technique est directement responsable du technosolutionnisme. Des programmes d’études qui exposent « la primauté du code et des manipulations symboliques engendrent des diplômés qui s’attaquent à tous les problèmes sociaux à l’aide de logiciels et d’algorithmes ». En cours d’éthique, les questions de politiques et d’orientation étaient réduites à des problèmes techniques. Wu fait référence à un cours très populaire sur l’optimisation mathématique donné par Stephen Boyd à Stanford. « Dans le monde de l’informatique et des mathématiques, un « problème d’optimisation » est toute situation dans laquelle nous avons des quantités variables que nous voulons fixer, une fonction objective à maximiser ou à minimiser, et des contraintes sur les variables ». Pour Boyd d’ailleurs « tout est un problème d’optimisation » ! Tout peut être modélisé, tout peut-être exprimé en fonction d’un critère d’utilité selon des critères plus ou moins grossiers. Une affirmation des plus banales pour ces étudiants. Pour Wu, nous sommes là face à un marqueur de l’état des sciences informatiques.
L’optimisation n’est pas récente, rappelle-t-il. Elle est née avec la Seconde Guerre mondiale et est devenue un passage obligé des sciences informatiques. La question des algorithmes d’optimisation est arrivée à maturité au milieu du XXe siècle, avec le développement de la programmation linéaire qui a permis de faire des progrès sur des problèmes allant de l’allocation des biens au routage logistique. En URSS, sous la coupe de son inventeur, Leonid Kantorovich, elle est devenue un outil central de la planification dès les années 60. En Occident, elle s’est déployée dans l’expédition et le transport. Des deux côtés du rideau de fer, longtemps, « l’optimisation a été déployée dans des contextes résolument non marchands », pour la planification notamment. Mais depuis le début du XXIe siècle, elle a été remodelée pour être utilisée par nombre d’applications, notamment commerciales. Désormais, aidés par l’IA et l’apprentissage automatisé, entreprises, armées et États exigent des algorithmes rapides, efficaces, sûrs, mais aussi intelligents, réactifs. Tout est en passe d’être exprimé à l’aide de variables, de contraintes et de fonctions objectives, puis résolues à l’aide d’un logiciel d’optimisation.
Cette prise de contrôle de l’optimisation se reflète sur les campus au vu du nombre d’inscriptions à ces cours. À Stanford toujours, au Huang Engineering Center, à quelques centaines de mètres de là où enseigne Boyd, Andrew NG (@andrewyng) donne des cours sur le Deep Learning où se pressent des milliers d’étudiants. Son cours porte sur les réseaux neuronaux profonds. Ici, les paradigmes d’optimisation ne sont pas de type planification, car les modèles n’ont que les contraintes qu’ils découvrent eux-mêmes. Une fois entraîné, le modèle est exécuté sur des échantillons de données. Si les résultats sont médiocres, le concepteur modifie les paramètres ou affine l’objectif. « L’ensemble du processus de formation d’un réseau neuronal est si ad hoc, si peu systématique et si embarrassant, que les étudiants se demandent souvent pourquoi ces techniques devraient fonctionner. » Personne ne sait très bien leur répondre, mais soyez-en assurés, elles fonctionnent ! « L’étude de l’apprentissage automatique offre une révélation stupéfiante : l’informatique du XXIe siècle manie, en réalité, des pouvoirs qu’elle comprend à peine » !
Le seul autre domaine qui semble à la fois en savoir autant et si peu est l’économie, explique encore Jimmy Wu. La comparaison est à raison : cette optimisation en roue libre et heuristique rappelle la façon dont l’économie elle-même est comprise. « Plutôt que de considérer l’optimisation comme une planification, nous cherchons à libérer la puissance de l’algorithme (le marché libre). Lorsque les résultats ne sont pas ceux escomptés, ou que l’algorithme optimise son objectif (le profit) avec beaucoup trop de zèle à notre goût, nous corrigeons docilement ses excès rétrospectivement avec toutes sortes de termes secondaires et de réglages de paramètres (taxes, péages, subventions). Pendant tout ce temps, le fonctionnement interne de l’algorithme reste opaque et sa puissance de calcul est décrite en termes de magie, de toute évidence compréhensible uniquement par une classe de technocrates doués et suréduqués. »
« Lorsqu’on entre dans le « monde réel », la perspective acquise grâce à ces formations en informatique s’intègre parfaitement à l’idéologie économique dominante. Après tout, qu’est-ce que le capitalisme néolibéral sinon un système organisé selon un cadre d’optimisation particulièrement étroit ? » « À l’école, on nous a dit que tout problème pouvait être résolu en tournant les boutons algorithmiques de la bonne manière. Une fois diplômés, cela se traduit par la conviction que, dans la mesure où la société a des défauts, il est possible d’y remédier sans changement systémique : si l’accumulation du capital est le seul véritable objectif et que le marché est un terrain de jeu infiniment malléable, il suffit de donner aux agents individuels les incitations appropriées. Pour réduire l’utilisation du plastique, ajoutez une surtaxe sur les sacs d’épicerie. Pour résoudre la crise du logement, relâchez les contraintes imposées aux promoteurs d’appartements de luxe. Pour contrôler la pollution, fixez un prix de marché en utilisant un système de plafonnement et d’échange. »
« À un niveau élevé, l’interprétation computationnelle de l’économie moderne ressemble à ceci : une économie peut être considérée comme un gigantesque problème d’optimisation distribuée. Dans sa forme la plus élémentaire, nous voulons décider quoi produire, combien payer les travailleurs et quels biens doivent être alloués à qui – ce sont les variables du programme d’optimisation. Les contraintes consistent en toute limite naturelle sur les ressources, la main-d’œuvre et la logistique. Dans le capitalisme primitif du laissez-faire, l’objectif à maximiser est, bien entendu, le profit ou le produit total. »
« Le péché originel du programme capitaliste est donc qu’il optimise non pas une certaine mesure du bien-être social ou de la satisfaction humaine, mais une quantité qui ne peut être qu’un lointain substitut de ces objectifs. Pour remédier aux dommages considérables causés par cette mauvaise formulation, les démocraties libérales d’aujourd’hui cherchent à concevoir un programme plus nuancé. Le profit constitue toujours le premier terme de l’objectif, mais il est désormais accompagné d’un éventail impressionnant de termes secondaires modifiables à l’infini : imposition progressive des revenus pour ralentir l’accumulation des richesses, taxes et subventions pigouviennes pour guider le comportement des consommateurs, et marchés d’émissions financiarisés pour freiner la désintégration rapide de la planète. Lorsque les carottes et les bâtons du marché ne suffisent pas, les gouvernements tentent d’imposer des réglementations, en introduisant des contraintes supplémentaires. Ces solutions politiques suivent précisément la même logique que les exercices qu’on nous propose en classe sur les réglages algorithmiques. »
Wu rappelle qu’il n’est donc pas étonnant que le rôle sociétal des algorithmes fasse l’objet de nombreux débats. Il n’y a pas si longtemps encore, les gens pensaient que les algorithmes étaient politiquement neutres ou ne présentaient pas de danger fondamental pour les humains. Comme la révolution industrielle précédente, cette révolution était considérée « comme un fait impersonnel de l’histoire économique, et non comme quelque chose qui discriminait activement certaines populations ou servait de projet à la classe dirigeante ». En 2013, quand on évoquait des biais dans les modèles, on estimait que c’était une question purement statistique dépourvue du moindre jugement moral. Depuis 4 ou 5 ans, la critique s’est emparée de la question des boîtes noires algorithmiques, montrant qu’elles excluaient nombre de personnes des services sociaux… La fausse neutralité et objectivité des calculs ont été démasquée, constate Wu. Un nouveau parti-pris a émergé qui reconnaît qu’en pratique, les algorithmes comme les données encodent des partis-pris.
Pour Wu néanmoins, ce nouveau parti-pris continue de faire l’apologie de la « tyrannie informatique ». Il reste sans idéologie !
Le problème c’est les programmeurs humains et les données ! Pas le fait que l’informatique travaille à améliorer et automatiser le monde… Or, comme le soulignait le philosophe Mark Fisher (Wikipedia), ce « réalisme capitaliste » (Entremonde, 2018) relève précisément de l’idéologie. La tâche qui reste à l’informatique comme au capitalisme, c’est « d’affiner le système au mieux de nos capacités »… À calculer encore et toujours leur efficacité maximale, les systèmes pourraient bien tourner en rond !
Les contributions du monde universitaire au capitalisme sont essentiellement venues de l’économie, notamment des partisans ultralibéraux de l’École de Chicago, explique encore Jimmy Wu. Mais ces contributions comportaient une limite majeure : l’économie reste une arène de débat, de désaccords…
L’informatique lui est bien supérieure, ironise l’ingénieur. « Elle enseigne les axiomes et les méthodes du capitalisme avancé, sans les questions politiques qui peuvent se poser en économie ou dans d’autres sciences sociales. Dans sa forme actuelle, l’informatique est un véhicule d’endoctrinement réussi pour l’industrie et l’État, précisément parce qu’elle apparaît comme leur contraire : un domaine sans valeur qui incarne à la fois des mathématiques rigoureuses et une ingénierie pragmatique. C’est le pourvoyeur idéal du réalisme capitaliste pour une époque sceptique ; une science de droite qui prospère dans notre ère post-idéologique. »
Peut-on, doit-on, faut-il défaire l’ordinateur et ses sciences ? Le débat oppose deux camps, simplifie Jimmy Wu. D’un côté l’élite traditionnelle qui ne voit pas même le problème. De l’autre, des « humanistes de la technologie », une alliance peu structurée de fonctionnaires critiques, de médias, de chercheurs, d’ONG et de repentis de la tech… qui pensent que les pratiques technologiques peuvent être apprivoisées par une politique plus éclairée, des pratiques d’ingénieries réformées et un peu plus d’éthique… Mais les deux parties partagent finalement la même vision, même si l’un a un visage plus aimable que l’autre : « celle d’une société dominée par une aristocratie technique qui exploite et surveille le reste d’entre nous ». L’informatique universitaire file les mêmes contradictions : le matin, un étudiant peut assister à un exposé sur la maximisation publicitaire et le soir construire une base de données pour une association locale…
L’ingénieure repentie, Wendy Liu (@dellsystem) en appelait dans le magazine socialiste britannique Tribune (@tribunemagazine) à « abolir la Silicon Valley » (elle en a depuis fait un livre : Abolir la Silicon Valley : comment libérer la technologie du capitalisme, Repeater Books, 2021, non traduit). Elle n’appelait pas par là à un rejet naïf de la technologie, mais à sa régulation, à sa transformation en un secteur qui soit financé, détenu et contrôlé par la société dans son ensemble et non plus seulement par quelques actionnaires.
Pour Wu, ce réformisme ne suffit pas. Il est nécessaire de mettre en cause ce qui sous-tend cette prise de pouvoir économique sur le monde. « La Silicon Valley n’existe pas dans un vide intellectuel : elle dépend d’un certain type de discipline informatique. Par conséquent, une refonte de la Silicon Valley par le peuple nécessitera une informatique « populaire » ». C’est-à-dire une autre informatique et une autre vision de l’informatique, soutient Jimmy Wu. Nous en sommes pourtant encore très loin. « Aujourd’hui, les départements d’informatique ne se contentent pas de générer le « réalisme capitaliste », ils sont eux-mêmes gouvernés par lui. » Le financement de la recherche en informatique est totalement dépendant des géants de l’industrie et de la défense. La recherche est guidée par les seules applications industrielles. Et tout ce beau monde nie que l’informatique contemporaine soit une entreprise politique (quelles que soient ses intentions apolitiques affichées). Pour remédier à ce brouillard idéologique étouffant, nous devrions construire une « informatique communiste », soutient Jimmy Wu. Il termine en l’esquissant à grand trait : à savoir que seuls les projets au service direct ou indirect des gens et de la planète devraient pouvoir être financés, en invitant à imaginer des algorithmes pour la planification économique participative, pour estimer le temps de travail socialement nécessaire, pour créer des chaînes d’approvisionnement locales… « La froide science de l’informatique semble déclarer que le progrès social est terminé – qu’il ne peut y avoir désormais que du progrès technologique. Pourtant, si nous parvenons à arracher le contrôle de la technologie à la tour d’ivoire de la Silicon Valley, les possibilités de la société post-capitaliste sont apparemment infinies. Le mouvement des travailleurs de la technologie du XXIe siècle est un véhicule plein d’espoir pour nous amener vers de telles perspectives ! Il est certes encore naissant, mais il est de plus en plus une force avec laquelle il faut compter, et, au risque de s’emballer, nous devrions commencer à imaginer le futur que nous souhaitons habiter. Il est temps de commencer à conceptualiser, et peut-être à prototyper, l’informatique et l’information dans un monde de travailleurs. Il est temps de commencer à concevoir une nouvelle science de gauche. »
Reste à savoir si la lutte contre les dérives des technologies (le techlash des employés de la tech) ou la prise en compte des questions écologiques suffiront à mobiliser les « agents de la société technicienne » comme le dit très bien le dernier numéro de Socialter (@socialter) ?
Si l’on en croit le dernier livre du sociologue Jamie Woodcock (@jamie_woodcock), Le combat contre le capitalisme de plateforme (Press de l’université de Westminster, 2021, non traduit), les travailleurs des plateformes parviennent à organiser de plus en plus d’actions collectives et à renforcer la solidarité transnationale, explique le politologue James Muldoon (@james_muldoon_) pour le blog de la London School of Economics (@LSEReviewBooks). En Europe, expliquait récemment The Guardian, la sécurité des travailleurs des plateformes progresse, tout comme le déploiement des plateformes coopératives, notamment autour de Coopcycle qui fédère plus de 67 coopératives dans 7 pays. La France semble plutôt tenir de l’exception en la matière, puisque malgré les jugements récents, les plateformes continuent à opérer par l’auto-entrepreneuriat.
Reste que l’horizon d’une nouvelle informatique qu’esquisse Jimmy Wu semble encore loin !
Dans son dernier livre Undoing Optimization : Civic Action in Smart Cities (Yale University Press, 2021, non traduit), la chercheuse Alison Powell (@a_b_powell, blog), qui est également la responsable du programme et réseau de recherche sur l’éthique de l’IA, Just AI (@justainet, blog), de l’Ada Lovelace Institute, rappelle que les données ne sont pas gratuites, qu’elles ne sont pas exemptes de déséquilibres de pouvoir. Comme elle l’explique dans une tribune pour la LSE, cette optimisation configure des rationalités, notamment le fait que les décisions opérationnelles soient basées sur des données disponibles. Pour elle, pour défaire l’optimisation, nous devons nous concentrer sur les frictions, les lacunes, les erreurs… Comme le propose l’anthropologue Anna Tsing, les frictions produisent des relations de négociation inédites. Pour Powell, « les relations de pouvoir inégales autour des données pourraient générer de nouvelles opportunités de changement social ».
Pour Powell, nous ne sommes pas suffisamment attentifs à la manière dont les technologies se superposent les unes aux autres. À la fin des années 90, la vogue était au citoyen en réseau, à l’individu connecté qui s’engage dans la ville grâce à la connectivité. L’accès est alors devenu une demande et a aussi produit (à la marge) quelques projets politiques (comme les réseaux communautaires sans fil, voir « Avons-nous besoin d’une vitesse limitée sur l’internet ? »). La démultiplication des données et des systèmes de capteurs connectés ont permis une collecte sans précédent et une forme d’optimisation de la vie urbaine en temps réel… Mais pour Powell, cette optimisation n’aborde pas la conception coercitive des applications qui servent à la collecte de données justement. Quand la ville intelligente donne la priorité aux données, l’optimisation produit une surveillance constante, incompatible avec les libertés collectives.
Au lieu de cela, les points de friction ouvrent une autre perspective et permettent de limiter l’objectif d’une optimisation sans limites. Pour la chercheuse, il est ainsi nécessaire d’interroger l’optimisation, de savoir « pour qui ce n’est pas optimal » justement. Pour Powell, nous devons travailler à des alternatives à l’optimisation. Elle propose un exemple, celui du projet Connected Seeds and Sensors – un projet londonien qui explore comment l’internet des objets peut soutenir la consommation et la production d’une alimentation durable – qui montrent que les données collectées sur les semences ne parviennent pas à être exhaustives. Le savoir n’est pas réductible aux informations. Pour la chercheuse, pour nous défaire de l’optimisation, nous devrions considérer que la friction est bien plus nécessaire pour créer de bonnes relations. Ensuite, nous devrions travailler à limiter la collecte de données plutôt que l’étendre. En privilégiant l’optimisation à la friction, nous risquons surtout d’oublier de construire des solidarités et des échanges qui ne soient pas que de données.
Comme elle l’expliquait dans le texte de configuration du réseau Just AI, l’éthique doit se penser d’abord comme une pratique. Comme elle le souligne encore dans un premier compte rendu de travaux portant sur la cartographie de la recherche éthique, « les préoccupations éthiques concernant l’IA sont désormais profondément imbriquées dans les préoccupations éthiques concernant de larges pans de la vie sociale ».
Dans la conclusion de son livre, Powell explique que le modèle de pensée « techno-systémique » étend sans fin la commodité des données et l’exploitation des informations personnelles. Le problème est que cette approche ne définit pas une bonne citoyenneté, mais seulement « une bonne citoyenneté technologique »… et celle-ci, d’une manière très récursive, ne consiste finalement qu’à soutenir toute optimisation. Le problème, explique Alison Powell, c’est que cet objectif restreint l’action civique à n’être qu’une consommation de ressources ! Le paradigme de l’optimisation par les données et les capteurs réduit en fait la place des citoyens à n’être que les acteurs de leur propre surveillance. Ce paradigme réduit également la diversité, favorise les intérêts privés plus que publics. Mais surtout, l’optimisation efface le conflit, les divergences, les dissensus, les frictions… Or, dans la réalité, bien souvent, les gens luttent pour redéfinir les formes normatives que produisent les données, et trouver des espaces de discontinuité entre les données. La liberté ne consiste pas seulement à ne pas être surveillé, mais également réside dans la capacité d’avoir des approches différentes, d’être en désaccord avec des interprétations, de revendiquer un droit à la discontinuité… Powell défend une datafication minimisée (un droit à la « datafication minimum viable », sur le modèle du Produit minimum viable). Pour elle, la transparence ou la responsabilité ne suffisent pas, car elles ne permettent pas de modifier le cadre technologique qui nous capture, de remettre en question son circuit de pouvoir, explique-t-elle en faisant référence au « droit à une ville intelligente soutenable » de Sara Heitlinger. Bref, de continuer à avoir le droit de faire évoluer nos modes de connaissances et de relations hors des produits prédictifs… À produire une société autrement qu’en calculant son efficacité maximale.
Cela nous renvoie au livre déjà classique de l’historien des technologies Edward Tenner (@edward_tenner), Le paradoxe de l’efficacité : ce que le Big Data ne peut pas faire (Penguin Random House, 2018, non traduit), qui soulignait combien l’inefficacité a de vertus. Tenner y rappelle que ce que nous rendons plus efficace rend toujours autre chose moins efficace. Que l’optimisation est toujours un choix qu’on peine à évaluer, dans ses coûts comme dans ses bénéfices. Dans son livre, Tenner observe l’apport ambigu de la techno sur la médecine, l’éducation et la connaissance pour souligner qu’il n’y a pas qu’une forme à l’efficacité, mais des formes qui s’imbriquent et se contrebalancent. Dans notre monde ultra rationnel, où domine le colonialisme comptable, où tout est converti en gains de productivité, l’historien pourtant bien peu radical, nous rappelle que l’inefficacité est parfois un bien meilleur chemin.
Hubert Guillaud
22.06.2021 à 07:00
Hubert Guillaud
Avec Contrôler les assistés, genèses et usages d’un mot d’ordre (Raisons d’agir, 2021), le sociologue Vincent Dubois (@vduboisluv) signe une somme très complète et très riche de sciences sociales.
Exigeante, cette longue enquête décortique les transformations du contrôle à l’égard des bénéficiaires de l’aide sociale des Caisses d’allocations familiales (CAF). Le livre permet de prendre la mesure de l’évolution des politiques publiques et notamment, pour nous qui nous intéressons aux transformations numériques, souligne le rôle fondamental de l’intégration de la fouille de données, du croisement des fichiers et d’une rationalisation numérique qui produisent une répression plus sévère et plus forte des assistés. Vincent Dubois montre comment, depuis 2000, nous sommes passés, très progressivement, avec le numérique, à « l’âge industriel » du contrôle par un changement de méthode et de finalités. Il souligne également combien l’analyse automatisée a épousé le modèle managérial, politique, économique et idéologique libéral qui s’est peu à peu mis en place durant la même période. Il pointe combien la raison statistique a été mise au service de la raison idéologique du contrôle au détriment de l’aide, du conseil, de l’assistance…
Finalement, en plongeant dans la transformation du contrôle, Vincent Dubois livre une autre histoire des transformations que produit le recours à l’informatique depuis une vingtaine d’années. Une histoire à bas bruit, que nous avons souhaitée éclairer avec lui.
InternetActu.net : Pourriez-vous pour commencer nous raconter comment et quand est né le traitement automatisé (data mining ou fouille de données) à la CAF ?
Vincent Dubois : La mise en place de la fouille de données à la CAF commence au niveau local. À l’origine, ce n’est pas quelque chose de pensé, ni une politique nationale, rationnelle ou programmatique. L’utilisation de techniques de prédiction statistique part de la rencontre fortuite entre l’agent comptable d’une caisse locale et d’une cadre de cette même caisse. L’agent était confronté à d’importants cas de fraude et s’est rendu compte qu’il était exposé à des poursuites, car il n’aurait pas entrepris toutes les démarches nécessaires pour prévenir une telle fraude. Sa cadre dirigeante va l’informer de l’existence de techniques statistiques pour détecter les risques d’erreurs et de fraudes, des techniques déjà mobilisées dans l’assurance et les sociétés de téléphonie mobile, notamment pour identifier les mauvais payeurs. C’est donc très tôt, au début des années 2000 que cette caisse met en place une expérimentation pour détecter les risques de fraude. Fort de ses premiers résultats, la méthode est peaufinée par des échanges entre la caisse locale et nationale après 2005. Des tests à grande échelle sont lancés pour produire des modèles. Et à partir de 2010, la fouille de données est généralisée. Cela fait donc plus de 10 ans que ces techniques y sont utilisées. La fouille de données et la prévision statistique sont devenues l’outil principal de détection et de déclenchement des contrôles des allocataires.
Cette façon de regarder l’histoire par le petit bout de la lorgnette est intéressante. Elle souligne combien l’adoption de ces outils s’est expérimentée de manière itérative, progressivement voire prudemment. La CNAF a été non seulement précurseure, mais également bon élève en matière de pratiques, tant et si bien qu’elles ont été imitées et généralisées depuis à d’autres organismes. Ces techniques de fouilles de données sont notamment utilisées depuis par Pôle emploi et l’administration fiscale, même si elles ont été adoptées plus tardivement et d’une façon peut-être un peu moins généralisées.
Donc très concrètement, ce développement technique s’est fait d’une manière très empirique. Les ciblages qui avaient lieu auparavant, eux, se basaient sur des observations ou des hypothèses de risques de fraudes ou d’erreurs, selon les allocataires ou les situations, mais restaient faits de manière hypothético-déductive. Avec la fouille de données, c’est l’inverse. La CNAF a fait réaliser 5000 contrôles, à grande échelle, sur la base d’un échantillon aléatoire d’allocataires. L’étude de ces 5000 dossiers a identifié des cas d’erreurs, de fraudes, d’indus… qui ont ensuite été utilisés pour reconstruire des agencements entre critères et variables qui caractérisaient les cas et pour construire des modélisations statistiques. Différents modèles ont été conçus avant d’être testés et mis en œuvre à grande échelle. Ces enquêtes à grande échelle sont réalisées de manière périodique pour ajuster les modèles aux évolutions des facteurs de risque.
Plusieurs modèles ont été dégagés de ces calculs de corrélation, notamment un facteur de risque global de la fraude et des modèles de risques plus spécifiquement adaptés à certains types de situations, comme la question de l’isolement ou la déclaration de ressources. Et ces modèles sont utilisés conjointement. Leur sélection repose sur leur « efficacité »… Cela signifie que la sélection ne repose pas tant sur des choix préalables que sur les rendements que les différents modèles produisent.
À l’origine donc, c’est bien la question de la lutte contre la fraude qui déclenche la mobilisation autour de ces outils et leur systématisation. La façon dont la fouille de données est mobilisée aujourd’hui garde trace de ses origines. Elle reste orientée vers la lutte contre la fraude, et plus généralement l’identification des indus, c’est-à-dire des sommes perçues à tort par les allocataires, car le montant de leurs revenus n’a pas été mis à jour ou que leur situation personnelle a changé.
Ce n’est pourtant pas exclusif d’autres usages possibles de ces techniques de fouille de données. Elles peuvent également être mobilisées pour détecter le non-recours aux droits ou le recours partiel, au bénéfice des allocataires, comme c’est le cas en Belgique ou au Royaume-Uni par exemple… Mais pour l’instant, en France, elles sont peu mobilisées pour cela. Ce qui laisse à penser que ce n’est pas la technique de fouille de données qui détermine ses effets, mais bien les usages qui en sont faits.
Internetactu.net : En quoi cette technique a-t-elle épousé les transformations politiques du contrôle ?
Vincent Dubois : Une autre manière de lire cette histoire, c’est de rentrer effectivement dans le type de conception inhérente à ces outils et l’affinité qu’ils peuvent avoir avec des manières de penser et des modèles d’organisation. Si on met en perspective l’usage de type de statistiques dans l’histoire longue des usages statistiques à des fins de gouvernement des populations comme dirait Foucault, on constate que la statistique classique porte sur la population dans son ensemble pour dégager des tendances, des moyennes, qui sont aussi des normes sociales. Avec la fouille de données, l’unité d’observation n’est plus la population, mais l’individu. C’est le comportement et la situation individuelle qui sont désormais l’objet de la connaissance. Ce changement de perspective est directement en affinité avec la philosophie néolibérale du sujet et du fonctionnement social qui considère, pour le dire vite et simplement, que la société et ses problèmes ne sont que le résultat de l’agrégation des comportements individuels. Le chômage par exemple n’est pas le produit de la structure du marché de l’emploi, mais le résultat de l’agrégation des individus à travailler ou pas.
La fouille de données est en affinité avec ce qui s’est imposé comme le principe managérial des organisations, notamment pour les organismes de protection sociale, à savoir la maîtrise des risques. Cette notion qui peut paraître vague est pourtant révélatrice d’une transformation de ces organismes et de leurs orientations. La notion de risque est consubstantielle aux politiques sociales et à l’État providence et part du principe que le travail, la maladie ou la vieillesse dépassent les responsabilités individuelles et doit être assumé de façon collective. Pourtant, cette maîtrise des risques dont on parle ici n’est pas tant le risque inhérent au fonctionnement social qu’une vision plus pragmatique et réduite : à savoir le risque financier que les bénéficiaires font courir aux organismes payeurs. La maîtrise des risques est également un principe managérial qui vise à prévenir leur survenance. Si la typologie des risques est souvent entendue de manière large, en pratique, le risque est surtout défini de manière précise et est profondément lié aux erreurs de déclaration des allocataires. Si cette notion de maîtrise des risques reste très englobante, c’est pour mieux faire disparaître le cœur de cible dans un principe managérial global. Un cœur de cible qui est à l’origine de la diffusion d’un impératif de contrôle à l’ensemble des organismes de protection sociale. La statistique prédictive ici correspond parfaitement à une politique dont l’objectif est de limiter le risque avant même qu’il ne survienne. Il y a eu une rencontre qui n’était pas totalement programmée entre la statistique prédictive et l’organisation des institutions de contrôle, mais qui a permis le renforcement de l’une et de l’autre. L’usage du data mining a pris sens dans le principe d’organisation même de la protection sociale et celui-ci s’est opérationnalisé dans la mise en œuvre même de cette technique, en renforçant l’individualisation et la responsabilisation des allocataires.
InternetActu.net : La fouille de données produit donc un score de risque de fraude pour chaque allocataire depuis 2011 à la CAF. Elle est utilisée depuis 2013 par Pôle emploi. Depuis 2014, par l’administration fiscale… Comment s’est répandu ce scoring, ce calcul des risques, cette « révolution industrielle » de l’administration publique ?
Vincent Dubois : Chaque utilisation est différente. À Pôle emploi, l’automatisation est surtout utilisée pour contrôler l’effectivité de la recherche d’emploi ainsi que pour la lutte contre la fraude, mais la focale y est plus réduite qu’à la CAF (l’enjeu consiste surtout à surveiller les escroqueries aux Assedics, fausses adresses, fausses fiches de payes… et emplois fictifs). Dans l’administration fiscale, la fouille de données s’est développée récemment mais ne conduit au déclenchement que d’environ 10 % des contrôles des particuliers, la proportion étant supérieure à 60 % pour celui des bénéficiaires d’aide sociale. Il faut rappeler ici le rôle joué par la création en 2008 de la Délégation nationale à la lutte contre la fraude (DNLF). Cette innovation institutionnelle est venue concrétiser les prises de position politiques du président Sarkozy dénonçant la fraude sociale et surtout la fraude aux prestations. Cette délégation interministérielle a eu la mission de coordonner les échanges, de favoriser les bonnes pratiques, de former et d’assurer une veille technique pour l’ensemble des services concernés par différents types de fraudes. Elle est créée alors que la fouille de données est en voie de généralisation à la CNAF et qu’elle y produit des résultats probants. Elle est rapidement devenue la technique mise en avant dont la DNLF a prôné la diffusion et la généralisation.
Internetactu.net : À côté de la statistique prédictive et du data mining, votre enquête de terrain pointe une autre transformation qui bouleverse le travail des administrations : le croisement de données ! Plus qu’un croisement d’ailleurs, c’est plutôt un « échange » voir même des accès croisés, qui renforcent le contrôle et produisent des vérifications de masse, peu coûteuses, et « efficaces ». Nous sommes passés d’un contrôle artisanal à un contrôle industriel, sous la pression de forces politiques qui ont valorisé et justifié le contrôle, mais qui a été structuré par une pléthore d’outils, de base de données et de modalités d’échanges de données. À la lecture de votre livre, en comprenant comment s’opèrent les contrôles, on découvre à quoi servent ces bases de données et portails d’information et comment ils sont mobilisés. Mais surtout, on découvre très concrètement que le respect de la vie privée et l’étanchéité des services publics, voire privés, sont devenus des vains mots. La séparation des administrations publiques et la séparation des pouvoirs qui leurs sont conférés ne sont-elles pas largement en train de disparaître ?
Vincent Dubois : Effectivement. La fouille de données et l’échange de données, même s’ils renvoient à des pratiques différentes (d’un côté des outils de détection et de l’autre des outils de contrôle), peuvent être regroupés dans un même ensemble d’usages. Il est frappant de constater le caractère concomitant et exponentiel de l’usage de ces techniques. Frappant de constater également le caractère très itératif de de développement. Nous ne sommes pas confrontés à un métafichier centralisé qui contrôlerait la population… comme l’était la menace du fichier Safari dont l’histoire raconte qu’il a donné lieu à la loi informatique et libertés de 1978, non ! La réalité est bien plus réticulaire que centralisée, mais cela ne l’empêche pas d’atteindre une forme de surveillance jamais vue. Cet ajout assez progressif d’accès et de croisement de données n’en réalise pas moins une surveillance tentaculaire.
Pour comprendre ce qu’il s’est passé, il faut tenter d’en démêler les fils chronologiques. Rappelons d’abord que la CAF, du fait de ce qu’elle traite, dispose d’une précision et d’une quantité de données personnelles sans commune mesure. Du fait de la batterie de critères et de leur diversité nécessaires pour accorder des aides, les organismes sociaux savent tout de la vie des personnes : santé, logement, travail, famille…
Au début des années 90, on a un premier mouvement d’informatisation, important et précoce, avec la création de systèmes internes aux organismes de protection sociale, comme la GED (gestion électronique des documents). En 1995, le NIR (Numéro d’inscription au répertoire, plus connu sous le nom de numéro de sécurité sociale) est autorisé pour le croisement des fichiers. Ca a favorisé le passage au caractère industriel du croisement des fichiers, car son usage a fait disparaître les nombreuses erreurs d’identification qui pouvaient exister notamment sur les noms, adresses et leurs orthographes. Ensuite ont été progressivement mis en place des protocoles d’échanges de données bilatérales, de façon itérative encore : entre la CAF et l’ANPE pour les bénéficiaires du RSA puis du RMI, entre la CAF et l’administration fiscale, etc. Un ensemble de conventions décidées de gré à gré se sont ajoutées les unes aux autres conduisant à une généralisation des possibilités d’échange de données. Ensuite, ont été constituées des bases de données « internes ». Il faut rappeler qu’il n’y avait pas de fichier national des allocataires, chaque caisse locale avait son fichier, ce qui créait notamment des risques de multiaffiliation. En 2006 est venu le RNCPS (Répertoire national commun de la protection sociale) : un répertoire qui permet à chaque organisme de protection sociale grâce aux identifiants uniques d’avoir accès aux fichiers consignés par les autres organismes sociaux. Puis la Déclaration sociale unique qui va faciliter l’unification des données en matière de ressources des allocataires. L’accès à d’autres fichiers n’a cessé de progresser… notamment l’accès direct à Ficoba (Fichier national des comptes bancaires et assimilés qui permet d’accéder aux relevés bancaires) pour contrôler la structure des ressources et dépenses des allocataires, vérifier leur train de vie ou la dissimulation de ressources non déclarées…
Ces évolutions décrivent une multiplication progressive et diversifiée d’une multitude de possibilités de croisement et d’accès à des données personnelles qui ont renforcé l’information que les organismes peuvent obtenir sur des personnes. Elles ont aussi considérablement renforcé l’efficacité des contrôles. Les croisements de ressources sont automatisés et déclenchent des contrôles en cas d’incohérence. Auquel s’ajoute le droit d’accès enfin, de façon plus individualisé et artisanal, qui permet d’accéder à des données pour des vérifications au cas par cas.
InternetActu.net : une autre transformation liée au numérique – mais pas seulement, elle est également liée à la normalisation, à des modalités de structuration des décisions, de cadrages des critères – tient également des documents utilisés, de la rationalisation des indications, des rapports. La rationalité n’est pas seulement dans les chiffres et les données, elle s’inscrit jusqu’à la normalisation des pratiques. Quels sont les effets de ces pratiques, de cette révolution de la normalisation et des traitements ?
Vincent Dubois : D’une manière générale, la structuration de la politique de contrôle a été marquée par un effort de rationalisation, qui rime avec une forme de nationalisation que l’on constate avec l’amoindrissement des latitudes d’appréciation laissées aux caisses locales. Effectivement, la technicisation par la fouille et l’échange de données est allée de pair avec la rationalisation des données. Si on regarde très concrètement le cas des enquêtes à domiciles par exemple, au début des années 2000, les contrôleurs étaient peu encadrés dans l’organisation pratique de leur travail. Les décisions liées à la qualification des situations d’isolement et la rédaction des rapports étaient assez libres dans leurs décisions et préconisations. Qualifier une décision d’isolement ou de vie maritale, malgré la jurisprudence relevait beaucoup des impressions du contrôleur. Par exemple, je me souviens d’un contrôle à domicile de personnes âgées qui habitaient ensemble et parlaient d’un arrangement amiable… Une version que le contrôleur avait retenue, n’imaginant pas que des personnes âgées puissent finalement se mettre en couple. Ne pas retenir la vie maritale serait impossible aujourd’hui. Notamment du fait des outils d’aide à la décision qui ont été créés, qui reposent sur des constats critérisés, des modalités de pondération de ces critères les uns par rapport aux autres et de la notation sur le degré de certitude de ces différents critères. La décision entre une situation d’isolement ou de vie maritale se fait désormais par le biais d’une formule Excel !
Cette automatisation de la décision… on peut voir soit positivement, comme une posture normative, un rempart logique contre les décisions individuelles des contrôleurs. On peut également la voir négativement, car elle conduit à une forme de déréalisation du traitement des dossiers. Les situations sociales sont souvent complexes et mouvantes et ne se laissent pas appréhender sur la base de critères standards et formalisés… Les contextes familiaux et les situations complexes échappent aux catégories bureaucratiques standards. La normalisation réduit la prise en compte de circonstances qualitatives, de ce qui pouvait être pris comme circonstances atténuantes. La standardisation conduit à une rigueur plus grande à la fois par la rectitude de l’application des critères et à la fois par la sévérité des décisions produites.
Ces transformations en tout cas sont très frappantes jusqu’à leur matérialité même. Au début des années 2000, les rapports des contrôleurs étaient souvent manuscrits, rédigés sur papier libre, formulés selon des styles propres aux préférences des contrôleurs, circonstanciés, souvent descriptifs de situations, narratifs plus que fonctionnels, mais livraient des ambiances, des réalités de situations. Désormais standardisés, les contrôleurs ne remplissent plus que des critères formels depuis des trames de plus en plus rigides, avec très peu d’espace de rédaction libres. Cette rationalité bureaucratique sous forme technologisée de formulaire en ligne qui ne laisse de choix que dans la réponse préremplie de menus déroulants produit une forme de déréalisation. Reste à savoir si nous sommes là face à un progrès qui prévient l’arbitraire et qui garantit une plus grande égalité. Ou face à une décision sans âme qui ne fait plus rentrer en ligne de compte les situations sociales.
InternetActu.net : le risque n’est-il pas d’une rationalisation de critères qui demeurent appréciatifs ?
Vincent Dubois : Oui. On évalue depuis des critères situationnels et de fait plus que depuis des critères juridiquement strictement définis, comme ceux liés à un statut. Face à des situations complexes et instables, l’administration fait souvent face à des situations indéterminables. Sur quels critères peut-on établir une vie maritale si la mère des enfants maintient des liens avec le père ? S’il vient trois jours par semaine ? S’il est là tous les week-ends ? Où placer le curseur ? Dans la logique des situations personnelles, la situation de précarité est marquée par une grande instabilité familiale, professionnelle, résidentielle… Or, l’administration doit arrêter des décisions dans un flux de changements. On a beau formaliser, multiplier les critères rationalisés… on ne réduira jamais le réel aux critères ! Dans les régimes assurantiels, on a des droits ouverts selon des critères de droit, de statut, de condition. Dès qu’on bascule dans des critères de faits, de situations ou de comportements… on est confronté à des difficultés. Le problème qui explique l’essor du contrôle, c’est le développement d’un système social où les prestations sont versées sur des critères de faits sont de plus en plus importants. Ce n’est donc pas un hasard si le contrôle concerne les populations les plus stigmatisées, comme celles qui bénéficient du Revenu de solidarité active ou de l’Allocation de parent isolé, car elles reposent plus que d’autres sur une qualification de situations ou de comportements.
InternetActu.net : Avec le numérique, le contrôle a changé de statut et réorienté les politiques publiques, expliquez-vous. La vérification est devenue plus coercitive et punitive, prise une spirale rigoriste inédite, qui vise à restreindre de manière toujours plus forte les règles d’attribution, les montants, les durées, les conditions d’attribution, les sanctions…), comme si l’État social se contractait. L’automatisation procède-t-elle plus à l’érosion des droits où à l’extension du contrôle ?
Vincent Dubois : L’extension du contrôle est certaine, pour les multiples raisons qu’on vient d’évoquer. La réponse informatique permet un traitement de masse des dossiers d’une façon peu coûteuse – notamment parce qu’il nécessite moins d’effectifs et qu’il produit une efficacité inédite du recouvrement – et aussi – c’est une justification souvent avancée ! – parce qu’il permet un contrôle à l’insu des contrôlés ! L’automatisation et l’informatisation ont été un vecteur très important de l’intensification des contrôles, de leur généralisation, de leur effectivité croissante et de la sévérité des décisions.
Sur la question de l’érosion des droits, peut-être faudrait-il déplacer la réponse en s’intéressant plus avant à ce qui se joue avec la dématérialisation des démarches. La thèse récente de Clara Deville sur « les chemins du droit » des bénéficiaires du RSA en milieu rural revient sur l’émergence – timide ! – de la notion de non-recours comme préoccupation officielle et la promotion de l’administration électronique. La dématérialisation est souvent vue comme la solution miracle, alors que, pour les personnes en précarité, elle est surtout un obstacle supplémentaire à l’accès aux droits. Dans ce cadre, le numérique ajoute des difficultés à celles qui existaient déjà en matière d’accès. Nous avons encore besoin d’enquêtes sur ces enjeux. Dans les démarches administratives, il y a des critères de compétences bien sûr – techniques pour savoir manier l’outil, mais également linguistique pour comprendre le vocabulaire administratif… -, mais aussi des critères liés aux situations ! Dans les situations standards, il est facile de rentrer dans les cases, même si elles sont rigidifiées par les formulaires numériques. Par contre, dès que les situations sont complexes, la dématérialisation renforce les obstacles. L’administration électronique, outre les questions d’accès, nous fait basculer dans une administration à distance qui renforce les problèmes d’accès déjà présents, notamment pour les populations les plus précaires. L’absence de face à face, pourtant primordiale, comme je le soulignais dans un précédent livre, La vie au guichet, empêche de se faire expliquer les démarches ou d’expliquer sa situation. L’obstacle classique du vocabulaire est ici renforcé, durcit, tout comme difficulté à « rentrer dans les cases », à qualifier sa situation sans explications ni accompagnement. Avec l’administration électronique, quand votre situation n’est pas prévue dans le menu déroulant, la discussion est close.
InternetActu.net : Votre livre est l’un des rares, si ce n’est le premier, à éclairer la question du « scoring » pratiqué par les administrations publiques. En tant que citoyens, nous ne savons rien des scores de risques qui sont affectés à nos profils. Si, notamment, la Loi pour la République numérique de 2016 prévoit l’ouverture des algorithmes publics et la publication des règles qui président à ces calculs, pour l’instant, ces publications concernent seulement les règles de calculs des droits et taxes. Comment se fait-il que ces calculs, pratiqués pourtant depuis 10 ans par la CAF, nous soient invisibles ? Comment expliquer cette discrétion pour ne pas dire ce secret dans la « révolution industrielle » des administrations publiques ?
Vincent Dubois : Il faudrait mener une enquête sur la transformation et le déclin de la CNIL. La réponse tient en partie au résultat de transformations juridiques liées notamment au droit européen, de transformations organisationnelles et un certain déclin des idéaux de liberté publique du fait des renouvellements générationnels au sein de la commission, tout autant qu’un rapport de force qui a sans doute affaibli la place de la CNIL dans le champ bureaucratique. De manière très concrète, tout cela a conduit à ce que les croisements de données et la création de bases de données dédiées ne soient plus soumis à autorisations préalables, mais instruites en interne par des délégués à la protection des données en discussion avec les administrations… Et que les avis de la CNIL ne soient désormais plus contraignants. Ces transformations du rôle de la CNIL ont ouvert une possibilité de croisement de données qu’on pensait impensable en 1978…
InternetActu.net : dans votre livre, vous écrivez d’ailleurs : « Trente ans après la loi informatique et libertés de 1978, les fichiers et croisements d’informations ont cependant été réalisés » dans une « ampleur bien plus importante que les projets qui l’avaient initialement suscitée »…
Vincent Dubois : Cela tient certainement beaucoup à la façon dont les choses se sont mises en place. Il n’y a pas eu un projet massif et centralisé auquel s’opposer, qui aurait créé débats et controverses… Le fait que ces questions aient été traitées au cas par cas, via des accords de gré à gré, à diluer leur mise en place, et ce alors que leur généralisation a été lente et très progressive. Nous n’avons pas été confrontés à un système généralisé, mais à une facilitation des procédures. Or, qui s’émeut d’une convention d’échanges de données entre deux organismes publics ?… Pourtant, mis bout à bout, l’ensemble de ces conventions font bien systèmes et produisent une efficacité redoutable.
Ensuite, la fouille de données se pare des atours d’une neutralité statistique et mobilise des techniques relativement complexes. Cette technicité permet de laisser de côté l’approfondissement des débats sur leurs usages ou leurs limites. Au final, il faut pouvoir faire une enquête comme la mienne pour saisir comment les données sont effectivement utilisées. Les administrations (mais on peut étendre le constat aux entreprises privées, comme la banque ou l’assurance par exemple) sont peu enclines à dévoiler les fonctionnements de leurs algorithmes, comme on le constate avec Parcoursup. Pourtant, il y a là un vrai enjeu démocratique. Nous devons connaître les informations personnelles que les administrations utilisent, comment et à quelles fins.
InternetActu.net : Dans ce nouveau paysage d’une surveillance omnipotente, y’a-t-il encore une place pour que les contrôlés puissent s’adapter, trouver des espaces ou des modalités pour prolonger les modes de « fraudes de survie » dans lesquels ils sont le plus souvent ? Le nombre de fraudes identifiées a été multiplié par 30 entre 2004 et 2017, mais leurs montants seulement par 16 et au prix d’un élargissement sans fin de la définition de la fraude (qui a largement dépassé la notion d’escroquerie organisée). Dans cette surveillance, toujours plus stricte, de plus en plus réactive, « ce sont presque toujours les allocataires les plus précaires qui sont le plus contrôlés », à savoir les individus isolés ou ceux dont les conditions d’emplois sont les plus irrégulières. Le risque n’est-il pas que les méthodes de calcul toujours plus précises toujours plus volatiles et évolutives (notamment la fin de l’annualisation des droits et prestations) se fassent au détriment des plus précaires sans leur laisser d’espaces d’adaptation, de tolérance ?
Vincent Dubois : Décrire l’expérience du contrôle vu du côté des contrôlés nécessiterait une autre enquête. Elle est difficile à réaliser, car il est difficile d’accéder aux personnes contrôlées… Je ne désespère pas pourtant qu’on puisse la réaliser un jour.
L’ajustement des pratiques des allocataires à ces systèmes semble se réduire. D’abord parce qu’il est difficile de s’adapter à des modèles de détection qu’on ne connaît pas vraiment. Néanmoins, il y a toujours des effets d’ajustements, liés à l’information qui circule, à l’expérience des contrôles qui forge des compétences pour s’y ajuster… Reste que, par nature, la fouille de données pour lutter contre la fraude ne cesse de s’ajuster à l’évolution des fraudes documentées, on l’a dit. Le système n’est pas fixe et établi, mais rétroagit. Les usages de fraudes sont régulièrement remodélisés pour améliorer les formes de contrôle.
Ce n’est pourtant pas un modèle sans failles. L’une des limites qui a été identifiée par exemple, c’est que le modèle est national, global, et qu’il est donc aveugle aux disparités locales. La même variable en fonction de contextes différents n’a pas la même signification. Être chômeur dans un bassin d’emploi où il y a beaucoup de chômage n’a pas la même signification ni les mêmes implications que de l’être dans un contexte où le taux de chômage est très faible. Cela nécessite certainement un travail pour intégrer des variables contextuelles aux modèles.
Enfin, une autre limite tient certainement à l’auto-alimentation de ces techniques. Devoir déclarer plus régulièrement des ressources produit mécaniquement des erreurs, des retards… Plus on suit au plus près et de façon continue les situations, en temps réel, plus les critères font l’objet d’erreurs… Et plus on les contrôle !
Propos recueillis par Hubert Guillaud, le 16/06/2021.